1887

Abstract

One Gram-stain negative, aerobic, non-motile bacterial strain, 2c-3, was isolated from symptomatic canker bark tissue of Populus × euramericana. It was studied by the genome sequence-derived average nucleotide identity (ANI), phylogenetic analysis based on 16S rRNA gene sequences and phenotypic characteristics. 16S rRNA gene data revealed that the novel isolate shares the greatest sequence similarity to Sphingobacterium populi 7Y-4 (97.0 %). The ANI values between the novel isolate and S. populi 7Y-4 was 81.19 %, lower than the proposed species boundary ANI cut-off (95–96 %). The major fatty acids are iso-C15 : 0, C16 : 1ω7c and iso-C17 : 0 3-OH. The polar lipids of the novel isolate included phosphatidylethanolamine, phospholipid, aminophospholipid and unknown lipids (L1–10). The menaquinone of the novel isolate was MK-7. The DNA G+C content was 41.96 mol %. Based on phenotypic and genotypic characteristics, the isolate represents a novel species within the genus Sphingobacterium , for which the name Sphingobacterium corticibacter is proposed. The type strain is 2c-3 (=CFCC 11898=KCTC 52798).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003148
2019-05-15
2019-08-19
Loading full text...

Full text loading...

References

  1. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucosenonfermenting Gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 1983;33:580–598 [CrossRef]
    [Google Scholar]
  2. Zhou XK, Li QQ, Mo MH, Zhang YG, Dong LM et al. Sphingobacterium tabacisoli sp. nov., isolated from a tobacco field soil sample. Int J Syst Evol Microbiol 2017;67:4808–4813 [CrossRef][PubMed]
    [Google Scholar]
  3. Fu YS, Hussain F, Habib N, Khan IU, Chu X et al. Sphingobacterium soli sp. nov., isolated from soil. Int J Syst Evol Microbiol 2017;67:2284–2288 [CrossRef][PubMed]
    [Google Scholar]
  4. Li Y, Xu GT, Chang JP, Guo LM, Yang XQ et al. Sphingobacterium corticis sp. nov., isolated from bark of Populus × euramericana. Int J Syst Evol Microbiol 2017;67:3860–3864 [CrossRef][PubMed]
    [Google Scholar]
  5. Huys G, Purohit P, Tan CH, Snauwaert C, Vos P et al. Sphingobacterium cellulitidis sp. nov., isolated from clinical and environmental sources. Int J Syst Evol Microbiol 2017;67:1415–1421 [CrossRef][PubMed]
    [Google Scholar]
  6. Xu L, Sun JQ, Wang LJ, Gao ZW, Sun LZ et al. Sphingobacterium alkalisoli sp. nov., isolated from a saline-alkaline soil. Int J Syst Evol Microbiol 2017;67:1943–1948 [CrossRef][PubMed]
    [Google Scholar]
  7. Lee Y, Jin HM, Jung HS, Jeon CO. Sphingobacterium humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 2017;67:4632–4638 [CrossRef][PubMed]
    [Google Scholar]
  8. Li Y, He W, Ren F, Guo L, Chang J et al. A canker disease of Populus × euramericana in China caused by Lonsdalea quercina subsp. populi. Plant Dis 2014;98:368–378 [CrossRef]
    [Google Scholar]
  9. Li Y, Xue H, Guo LM, Koltay A, Palacio-Bielsa A et al. Elevation of three subspecies of Lonsdalea quercina to species level: Lonsdalea britannica sp. nov., Lonsdalea iberica sp. nov. and Lonsdalea populi sp. nov. Int J Syst Evol Microbiol 2017;67:4680–4684 [CrossRef][PubMed]
    [Google Scholar]
  10. Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 2003;55:541–555 [CrossRef][PubMed]
    [Google Scholar]
  11. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp.115–175
    [Google Scholar]
  12. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  13. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  14. Li Y, Song LM, Guo MW, Wang LF, Liang WX. Sphingobacterium populi sp. nov., isolated from bark of Populus × euramericana. Int J Syst Evol Microbiol 2016;66:3456–3462 [CrossRef][PubMed]
    [Google Scholar]
  15. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. PNAS 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  16. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  17. Lee I, Kim YO, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  18. Jenkins D, Richard MG, Daigger GT. Manual on the causes and control of activated sludge bulking and foaming. Water Research Commission 1986
    [Google Scholar]
  19. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Manual of Methods for General and Microbiology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  20. Gomori G. Preparation of buffers for use in enzyme studies. In Colowick SP, Kaplan NO. (editors) Methods in Enzymology NewYork: Academic Press; 1955; pp.138–146
    [Google Scholar]
  21. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Notes 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  22. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  23. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207
    [Google Scholar]
  24. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  25. Du HJ, Zhang YQ, Liu HY, Su J, Wei YZ et al. Allonocardiopsis opalescens gen. nov., sp. nov., a new member of the suborder Streptosporangineae, from the surface-sterilized fruit of a medicinal plant. Int J Syst Evol Microbiol 2013;63:900–904 [CrossRef][PubMed]
    [Google Scholar]
  26. Groth I, Schumann P, Rainey FA, Martin K, Schuetze B et al. Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 1997;47:1129–1133 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003148
Loading
/content/journal/ijsem/10.1099/ijsem.0.003148
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error