1887

Abstract

A Gram-stain-negative, strictly aerobic, non-motile strain, SYSUP0003, was isolated from tubers of Gastrodia elata Blume. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SYSUP0003 belonged to the genus Paracoccus , with the highest sequence similarity to the type strain of Paracoccus sediminis (97.5 %). Strain SYSUP0003 grew at pH 6.0–8.0 and 4–30 °C with optimum growth at pH 7.0 and 28 °C. Strain SYSUP0003 could tolerate up to 1 % (w/v) NaCl and grew optimally in the absence of NaCl. The isoprenoid quinone of strain SYSUP0003 was Q-10. The major fatty acids were C18 : 0, C16 : 0, C10 : 0 3-OH and summed feature 7. The polar lipids were diphosphatidylglycerol (DPG), aminophospholipids (AL), phosphatidylglycerol (PG), phosphatidylcholine (PC) and four unidentified polar lipids (L). The genome size was 3 204 685 bp, with a DNA G+C content of 69.7 mol%. The average nucleotide identity values between strain SYSUP0003 and P. sediminis DSM 26170 (ANIm 84.2 %, ANIb 75.6 %), Paracoccus solventivorans DSM 6637 (ANIm 84.5 %, ANIb 76.9 %) and Paracoccus alkenifer DSM 11593 (ANIm 84.3 %, ANIb 77.3 %) were below the cut-off level (95–96 %) for species delineation. Based on phenotypic, chemotaxonomic and molecular characterizations, strain SYSUP0003 represents a novel species of the genus Paracoccus , for which the name Paracoccus endophyticus sp. nov. is proposed. The type strain is SYSUP0003 (=KCTC 62180=CGMCC 1.16545).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003142
2018-11-29
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/1/261.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003142&mimeType=html&fmt=ahah

References

  1. Davis DH, Doudoroff M, Stanier RY, Mandel M. Proposal to reject the genus Hydrogenomonas: Taxonomic implications. Int J Syst Bacteriol 1969;19:375–390 [CrossRef]
    [Google Scholar]
  2. Parte AC. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  3. Singh AK, Kohli P, Mahato NK, Lal R. Paracoccus sordidisoli sp. nov., isolated from an agricultural field contaminated with hexachlorocyclohexane isomers. Int J Syst Evol Microbiol 2017;67:4365–4371 [CrossRef][PubMed]
    [Google Scholar]
  4. Sun X, Luo P, Li M. Paracoccus angustae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015;65:3469–3475 [CrossRef][PubMed]
    [Google Scholar]
  5. Mcginnis JM, Cole JA, Dickinson MC, Mingle LA, Lapierre P et al. Paracoccus sanguinis sp. nov., isolated from clinical specimens of New York State patients. Int J Syst Evol Microbiol 2015;65:1877–1882 [CrossRef][PubMed]
    [Google Scholar]
  6. Park S, Yoon SY, Jung YT, Won SM, Park DS et al. Paracoccus aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016;66:2992–2998 [CrossRef][PubMed]
    [Google Scholar]
  7. Dominguez-Moñino I, Jurado V, Hermosin B, Saiz-Jimenez C. Paracoccus cavernae sp. nov., isolated from a show cave. Int J Syst Evol Microbiol 2016;66:2265–2270 [CrossRef][PubMed]
    [Google Scholar]
  8. Sun LN, Zhang J, Kwon SW, He J, Zhou SG et al. Paracoccus huijuniae sp. nov., an amide pesticide-degrading bacterium isolated from activated sludge of a wastewater biotreatment system. Int J Syst Evol Microbiol 2013;63:1132–1137 [CrossRef][PubMed]
    [Google Scholar]
  9. Pan J, Sun C, Zhang XQ, Huo YY, Zhu XF et al. Paracoccus sediminis sp. nov., isolated from Pacific Ocean marine sediment. Int J Syst Evol Microbiol 2014;64:2512–2516 [CrossRef][PubMed]
    [Google Scholar]
  10. Qin S, Li J, Chen HH, Zhao GZ, Zhu WY et al. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 2009;75:6176–6186 [CrossRef][PubMed]
    [Google Scholar]
  11. Khieu TN, Liu MJ, Nimaichand S, Quach NT, Chu-Ky S et al. Characterization and evaluation of antimicrobial and cytotoxic effects of Streptomyces sp. HUST012 isolated from medicinal plant Dracaena cochinchinensis Lour. Front Microbiol 2015;6:574 [CrossRef][PubMed]
    [Google Scholar]
  12. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  13. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956;178:703–704 [CrossRef][PubMed]
    [Google Scholar]
  14. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978;24:710–715 [CrossRef][PubMed]
    [Google Scholar]
  15. Van Spanning RJM, Stouthamer AH, Baker SC, Van Verseveld HW, Genus XII et al. Paracoccus Davis 1969, 384AL emend. Ludwig, Mittenhuber and Friedrich 1993, 366. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 2 New York: Springer; 2005; pp.97–204
    [Google Scholar]
  16. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007;57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  17. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  20. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  21. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  22. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  23. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  25. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  26. Kroppenstedt RM. Separation of Bacterial Menaquinones by HPLC Using Reverse Phase (RP18) and a Silver Loaded Ion Exchanger as Stationary Phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: Microbial ID, Inc; 1990
    [Google Scholar]
  28. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the Classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979;47:87–95 [CrossRef]
    [Google Scholar]
  29. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric Acid. J Appl Bacteriol 1980;48:459–470 [CrossRef]
    [Google Scholar]
  30. La HJ, Im WT, Ten LN, Kang MS, Shin DY et al. Paracoccus koreensis sp. nov., isolated from anaerobic granules in an upflow anaerobic sludge blanket (UASB) reactor. Int J Syst Evol Microbiol 2005;55:1657–1660 [CrossRef][PubMed]
    [Google Scholar]
  31. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  32. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25:1043–1055 [CrossRef][PubMed]
    [Google Scholar]
  33. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35:3100–3108 [CrossRef][PubMed]
    [Google Scholar]
  34. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997;25:955–964 [CrossRef][PubMed]
    [Google Scholar]
  35. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007;23:673–679 [CrossRef][PubMed]
    [Google Scholar]
  36. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  37. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004;5:R12–2483 [CrossRef][PubMed]
    [Google Scholar]
  38. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32:929–931 [CrossRef][PubMed]
    [Google Scholar]
  39. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  40. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003142
Loading
/content/journal/ijsem/10.1099/ijsem.0.003142
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error