1887

Abstract

A Gram-stain-negative, aerobic, non-motile, short-rod-shaped bacterium, designated as strain TC11, was isolated from rhizosphere soil of mangrove forest (Kandeliaobovata) in Fugong village, Zhangzhou, Fujian, China. Strain TC11 grew at 15–45 °C (optimum, 35 °C), 0–8 % (w/v) NaCl (optimum, 1 %, w/v) and pH 5.5–9.5 (optimum, pH 7.5). Phylogenetic analyses revealed that strain TC11 belonged to a clade of the genus Pseudomonas and showed the highest sequence similarity of 98.4 % to Pseudomonas fluvialis ASS-1, followed by Pseudomonas oleovorans subsp. oleovorans DSM 1045 (97.9 %), Pseudomonas indoloxydans JCM 14246 (97.7 %), Pseudomonas guguanensis JCM 18416(97.6 %) and Pseudomonas alcaliphila JCM 10630 (97.5 %) on the basis of their 16S rRNA gene sequences. The DNA G+C content was 64.3 mol%. In silico DNA–DNA hybridization and average nucleotide identity values between strain TC11 and the reference strains were 19–22 % and 72–78 %, respectively. Studies based on the three housekeeping genes, rpoB, gyrB and rpoD, further confirmed that strain TC11 is a novel member of the genus Pseudomonas . The major fatty acids of strain TC11were C16 : 0, summed feature 8 (C18 : 1ω6c/C18 : 1ω7c) and summed feature 3 (C16 : 1ω7c/C16 : 1ω6c). The sole isoprenoid quinone was Q-9. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Based on the phenotypic, chemotaxonomic and phylogenetic properties, strain TC11 represents a novel species of the genus Pseudomonas , for which the name Pseudomonas mangrovi sp. nov., is proposed. The type strain is TC11 (=KCTC 62159=MCCC 1K03499).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003141
2019-01-02
2020-03-31
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/2/377.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003141&mimeType=html&fmt=ahah

References

  1. Pal leroni NJ. Introduction to the family Pseudomonadaceae. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH et al. (editors) The Prokaryotes, 2nd ed. New York: Springer; 1992; pp.3071–3085
    [Google Scholar]
  2. Carrión O, Miñana-Galbis D, Montes MJ, Mercadé E. Pseudomonas deceptionensis sp. nov., a psychrotolerant bacterium from the Antarctic. Int J Syst Evol Microbiol 2011;61:2401–2405 [CrossRef][PubMed]
    [Google Scholar]
  3. Migula W. Übereinneues system der Bakterien. Arb BakteriolInst Karlsruhe 1894;1:235–238
    [Google Scholar]
  4. Palleroni NJ. Pseudomonas classification. A new case history in the taxonomy of gram-negative bacteria. Antonie van Leeuwenhoek 1993;64:231[PubMed]
    [Google Scholar]
  5. Las Heras A, Domínguez L, López I, Fernández-Garayzábal JF. Outbreak of acute ovine mastitis associated with Pseudomonas aeruginosa infection. Vet Rec 1999;145:111–112 [CrossRef][PubMed]
    [Google Scholar]
  6. Peix A, Ramírez-Bahena MH, Velázquez E. Historical evolution and current status of the taxonomy of genus Pseudomonas. Infect Genet Evol 2009;9:1132–1147 [CrossRef][PubMed]
    [Google Scholar]
  7. Oyaizu H, Komagata K. Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J Gen Appl Microbiol 1983;29:17–40 [CrossRef]
    [Google Scholar]
  8. Sneath PH, Stevens M, Sackin MJ. Numerical taxonomy of Pseudomonas based on published records of substrate utilization. Antonie van Leeuwenhoek 1981;47:423–448 [CrossRef][PubMed]
    [Google Scholar]
  9. Oyaizu H, Komagata K. Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J Gen Appl Microbiol 1983;29:17–40 [CrossRef]
    [Google Scholar]
  10. Paisley R. MIS Whole Cell Fatty Acid Analysis by Gas Chromatography Training Manual Newark, DE: MIDI; 1996
    [Google Scholar]
  11. Palleroni NJ. Genus 1. Pseudomonas Migula. In Krieg NR, Holt JG. (editors) Bergeys Manual of Systematic Bacteriologyvol. 1 Baltimore, MD: Williams & Wilkins; 1984; pp.141–199
    [Google Scholar]
  12. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H et al. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 2000;50 Pt 4:1563–1589 [CrossRef][PubMed]
    [Google Scholar]
  13. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010;12:1513–1530 [CrossRef][PubMed]
    [Google Scholar]
  14. Macian MC, Arahal DE, Ludwig W et al. Thalassobacter stenotrophicus gen. nov.sp. nov., a novel marine alphaproteobacterium isolated from Mediterranean sea water. Int J Syst Evol Microbiol 2005;55:105–110
    [Google Scholar]
  15. Gerhardt P. Methods for general and molecular bacteriology. Methods for General & Molecular Microbiology 1994
    [Google Scholar]
  16. Dong X, Cai M. Determinative manual for routine bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  17. Farmer III JJ, Janda JM, Brenner FW, Cameron DN, Birkhead KM et al. Genus I. Vibrio Pacini 1854, 411AL. In Garrity GM, Brenner DJ, Krieg NR, Staley JT. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed.vol. 2 New York: Springer; 2005; pp.494–546 The Proteobacteria, Part B, The Gammaproteobacteria
    [Google Scholar]
  18. Paisley R. MIS Whole Cell Fatty Acid Analysis by Gas Chromatography Training Manual Newark, DE: MIDI; 1996
    [Google Scholar]
  19. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16:584–586[PubMed]
    [Google Scholar]
  20. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  21. Fu GY, Yu XY, Zhang CY, Zhao Z, Wu D et al. Mesorhizobium oceanicum sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2017;67:2739–2745 [CrossRef][PubMed]
    [Google Scholar]
  22. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  23. Su Y, Wang R, Sun C, Han S, Hu J et al. Thalassobaculum fulvum sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2016;66:2186–2191 [CrossRef][PubMed]
    [Google Scholar]
  24. Anwar N, Abaydulla G, Zayadan B et al. Pseudomonas populi sp. nov.anendophytic bacterium isolated from Populuseuphratica. Int J Syst Evol Microbiol 2016;66:1419–1425
    [Google Scholar]
  25. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  26. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  27. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  28. Kumar S, Stecher G, Tamura K. MEGA 7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. J Mol Biol Evol 1870;2016:33
    [Google Scholar]
  29. Saitou N, Nei M. The neighbour-joining method: a new method for reconstructing phylogenetic trees. J Mol Biol Evol 1987;4:406–425
    [Google Scholar]
  30. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  31. Rzhetsky A, Nei M. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992;35:367–375 [CrossRef][PubMed]
    [Google Scholar]
  32. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  33. Ait Tayeb L, Ageron E, Grimont F, Grimont PA. Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res Microbiol 2005;156:763–773 [CrossRef][PubMed]
    [Google Scholar]
  34. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ et al. ABySS: a parallel assembler for short read sequence data. Genome Res 2009;19:1117–1123 [CrossRef][PubMed]
    [Google Scholar]
  35. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25:1043–1055 [CrossRef][PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  37. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  38. Hameed A, Shahina M, Lin SY, Liu YC, Young CC et al. Pseudomonas hussainii sp. nov., isolated from droppings of a seashore bird, and emended descriptions of Pseudomonas pohangensis, Pseudomonas benzenivorans and Pseudomonas segetis. Int J Syst Evol Microbiol 2014;64:2330–2337 [CrossRef][PubMed]
    [Google Scholar]
  39. Liu YC, Young LS, Lin SY, Hameed A, Hsu YH et al. Pseudomonas guguanensis sp. nov., a gammaproteobacterium isolated from a hot spring. Int J Syst Evol Microbiol 2013;63:4591–4598 [CrossRef][PubMed]
    [Google Scholar]
  40. Ramírez-Bahena MH, Cuesta MJ, Flores-Félix JD, Mulas R, Rivas R et al. Pseudomonas helmanticensis sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2014;64:2338–2345 [CrossRef][PubMed]
    [Google Scholar]
  41. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  42. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003141
Loading
/content/journal/ijsem/10.1099/ijsem.0.003141
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error