1887

Abstract

As part of a study investigating the rhizosphere and endosphere of the Eastern cottonwood tree, Populus deltoides, a number of isolates were subjected to genome sequencing. The genome-derived 16S rRNA gene sequence of strain CF314 was 97.0 % similar to those of the Chryseobacterium daecheongense and Chryseobacterium polytrichastri type strains, but was essentially equidistant from many other Chryseobacterium type strains. Overall genome similarity metrics (average nucleotide identity, digital DNA–DNA hybridization, average amino acid identity) revealed greatest similarity to the Chryseobacterium daecheongense , Chryseobacterium piperi and Chryseobacterium soldanellicola type strains, but were well below the species thresholds. Strain CF314 had a typical fatty acid composition for Chryseobacterium species and produced flexirubin pigments, but not carotenoids. The genome encodes a number of proteins such as a C-type lectin and terpene synthases that are also found in other plant-associated Bacteroidetes . Based on phenotypic and genomic characteristics of the strain, we propose the new species Chryseobacterium populi. The type strain is CF314=KCTC 62722=LMG 30786.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003140
2018-12-20
2019-10-22
Loading full text...

Full text loading...

References

  1. Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B. New Perspectives in the Classification of the Flavobacteria: Description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 1994;44:827–831 [CrossRef]
    [Google Scholar]
  2. Parte AC. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  3. Parte AC. LPSN-List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018;68:1825–1829 [CrossRef][PubMed]
    [Google Scholar]
  4. Kämpfer P, Vaneechoutte M, Lodders N, de Baere T, Avesani V et al. Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium. Int J Syst Evol Microbiol 2009;59:2421–2428 [CrossRef][PubMed]
    [Google Scholar]
  5. Kämpfer P, Lodders N, Vaneechoutte M, Wauters G. Transfer of Sejongia antarctica, Sejongia jeonii and Sejongia marina to the genus Chryseobacterium as Chryseobacterium antarcticum comb. nov., Chryseobacterium jeonii comb. nov. and Chryseobacterium marinum comb. nov. Int J Syst Evol Microbiol 2009;59:2238–2240 [CrossRef][PubMed]
    [Google Scholar]
  6. Hahnke RL, Meier-Kolthoff JP, García-López M, Mukherjee S, Huntemann M et al. Genome-based taxonomic classification of Bacteroidetes. Front Microbiol 2003;2016:7
    [Google Scholar]
  7. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018;36:996–1004 [CrossRef][PubMed]
    [Google Scholar]
  8. Wu YF, Wu QL, Liu SJ. Chryseobacterium taihuense sp. nov., isolated from a eutrophic lake, and emended descriptions of the genus Chryseobacterium, Chryseobacterium taiwanense, Chryseobacterium jejuense and Chryseobacterium indoltheticum. Int J Syst Evol Microbiol 2013;63:913–919 [CrossRef][PubMed]
    [Google Scholar]
  9. Montero-Calasanz MC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium oleae sp. nov., an efficient plant growth promoting bacterium in the rooting induction of olive tree (Olea europaea L.) cuttings and emended descriptions of the genus Chryseobacterium, C. daecheongense, C. gambrini, C. gleum, C. joostei, C. jejuense, C. luteum, C. shigense, C. taiwanense, C. ureilyticum and C. vrystaatense. Syst Appl Microbiol 2014;37:342–350 [CrossRef][PubMed]
    [Google Scholar]
  10. Chen XY, Zhao R, Chen ZL, Liu L, Li XD et al. Chryseobacterium polytrichastri sp. nov., isolated from a moss (Polytrichastrum formosum), and emended description of the genus Chryseobacterium. Antonie van Leeuwenhoek 2015;107:403–410 [CrossRef][PubMed]
    [Google Scholar]
  11. Brown SD, Utturkar SM, Klingeman DM, Johnson CM, Martin SL et al. Twenty-one genome sequences from Pseudomonas species and 19 genome sequences from diverse bacteria isolated from the rhizosphere and endosphere of Populus deltoides. J Bacteriol 2012;194:5991–5993 [CrossRef][PubMed]
    [Google Scholar]
  12. Gottel NR, Castro HF, Kerley M, Yang Z, Pelletier DA et al. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl Environ Microbiol 2011;77:5934–5944 [CrossRef][PubMed]
    [Google Scholar]
  13. Shakya M, Gottel N, Castro H, Yang ZK, Gunter L et al. A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature Populus deltoides trees. PLoS One 2013;8:e76382 [CrossRef][PubMed]
    [Google Scholar]
  14. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014;42:D206–D214 [CrossRef][PubMed]
    [Google Scholar]
  15. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  16. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;33:152–155
    [Google Scholar]
  17. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  18. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  19. Kyrpides NC, Hugenholtz P, Eisen JA, Woyke T, Göker M et al. Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains. PLoS Biol 2014;12:e10019201001927 [CrossRef][PubMed]
    [Google Scholar]
  20. Whitman WB, Woyke T, Klenk HP, Zhou Y, Lilburn TG et al. Genomic encyclopedia of Bacterial and Archaeal type strains, phase III: the genomes of soil and plant-associated and newly described type strains. Stand Genomic Sci 2015;10:8–13 [CrossRef][PubMed]
    [Google Scholar]
  21. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E et al. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 2009;462:1056–1060 [CrossRef][PubMed]
    [Google Scholar]
  22. Mukherjee S, Seshadri R, Varghese NJ, Eloe-Fadrosh EA, Meier-Kolthoff JP et al. 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. Nat Biotechnol 2017;35:676–683 [CrossRef][PubMed]
    [Google Scholar]
  23. Buonaccorsi VP, Boyle MD, Grove D, Praul C, Sakk E et al. GCAT-SEEKquence: genome consortium for active teaching of undergraduates through increased faculty access to next-generation sequencing data. CBE Life Sci Educ 2011;10:342–345 [CrossRef][PubMed]
    [Google Scholar]
  24. Buonaccorsi V, Peterson M, Lamendella G, Newman J, Trun N et al. Vision and change through the genome consortium for active teaching using next-generation sequencing (GCAT-SEEK). CBE Life Sci Educ 2014;13:1–2 [CrossRef][PubMed]
    [Google Scholar]
  25. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 2014;64:316–324 [CrossRef][PubMed]
    [Google Scholar]
  26. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  27. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  29. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75–15 [CrossRef][PubMed]
    [Google Scholar]
  30. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015;43:6761–6771 [CrossRef][PubMed]
    [Google Scholar]
  31. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005;187:6258–6264 [CrossRef][PubMed]
    [Google Scholar]
  32. Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 2007;10:504–509 [CrossRef][PubMed]
    [Google Scholar]
  33. Kim KK, Bae HS, Schumann P, Lee ST. Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 2005;55:133–138 [CrossRef][PubMed]
    [Google Scholar]
  34. Strahan BL, Failor KC, Batties AM, Hayes PS, Cicconi KM et al. Chryseobacterium piperi sp. nov., isolated from a freshwater creek. Int J Syst Evol Microbiol 2011;61:2162–2166 [CrossRef][PubMed]
    [Google Scholar]
  35. Wentz TG, Muruvanda T, Lomonaco S, Thirunavukkarasu N, Hoffmann M et al. Closed genome sequence of Chryseobacterium piperi Strain CTMT/ATCC BAA-1782, a gram-negative bacterium with clostridial neurotoxin-like coding sequences. Genome Announc 2017;5:1–2 [CrossRef][PubMed]
    [Google Scholar]
  36. Park MS, Jung SR, Lee KH, Lee MS, do JO et al. Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 2006;56:433–438 [CrossRef][PubMed]
    [Google Scholar]
  37. Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 2010;5:e9490 [CrossRef][PubMed]
    [Google Scholar]
  38. Veith PD, Glew MD, Gorasia DG, Reynolds EC. Type IX secretion: the generation of bacterial cell surface coatings involved in virulence, gliding motility and the degradation of complex biopolymers. Mol Microbiol 2017;106:35–53 [CrossRef][PubMed]
    [Google Scholar]
  39. Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. ASM Press; 2007
    [Google Scholar]
  40. Bernardet J-F, Hugo CJ, Bruun B. Chryseobacterium. In Whitman WB. (editor) Bergey’s Manual of Systematics of Archaea and Bacteria Wiley; 2015
    [Google Scholar]
  41. Kämpfer P, Trček J, Skok B, Šorgo A, Glaeser SP et al. Chryseobacterium limigenitum sp. nov., isolated from dehydrated sludge. Antonie van Leeuwenhoek 2015;107:1633–1638 [CrossRef][PubMed]
    [Google Scholar]
  42. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  43. Stropko SJ, Pipes SE, Newman JD. Genome-based reclassification of Bacillus cibi as a later heterotypic synonym of Bacillus indicus and emended description of Bacillus indicus. Int J Syst Evol Microbiol 2014;64:3804–3809 [CrossRef][PubMed]
    [Google Scholar]
  44. Sasser M. Technical note # 101 microbial identification by Gas Chromatographic Analysis of Fatty Acid Methyl Esters (GC-FAME). 2009;1–6
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003140
Loading
/content/journal/ijsem/10.1099/ijsem.0.003140
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error