1887

Abstract

A novel Gram-stain-negative, rod-shaped, motile, non-spore-forming, facultatively anaerobic marine bacterium was isolated from the gastrointestinal tract of the sandworm Alitta succinea collected from Grice Cove, South Carolina, USA. The strain was arginine dihydrolase-positive, and oxidase- and catalase-positive. Growth occurred between 10 and 37 °C, with optimal growth occurring between 30 and 32 °C. Comparative 16S rRNA gene sequence analysis showed its nearest neighbours are members of the genus Kistimonas of the family Hahellaceae , which is found in the order Oceanospirillales , class Gammaproteobacteria . The closest related species was Kistimonas asteriae KMD 001 with 16S rRNA gene sequence similarity of 99.0 %. However, DNA–DNA hybridization between these strains revealed less than 70 % DNA–DNA relatedness, supporting the novel species status of the strain. The major fatty acids were C16 : 0, C18 : 0, C18 : 1ω7c and a summed feature that contained C16 : 1ω6c/C16 : 1ω7c. The major respiratory quinone was ubiquinone-9 and the predominant polar lipids were phosphatidylserine, phosphoethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The genomic DNA G+C content was 52.5 mol%. Based on the data presented, strain BGP-2 is considered to represent a novel member of the genus Kistimonas , for which the name Kistimonas alittae sp. nov. is proposed. The type strain is BGP-2 (=CCUG 65711=JCM 30010).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003137
2018-11-28
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/1/235.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003137&mimeType=html&fmt=ahah

References

  1. Choi EJ, Kwon HC, Sohn YC, Yang HO. Kistimonas asteriae gen. nov., sp. nov., a gammaproteobacterium isolated from Asterias amurensis. Int J Syst Evol Microbiol 2010;60:938–943 [CrossRef][PubMed]
    [Google Scholar]
  2. Lee J, Shin NR, Lee HW, Roh SW, Kim MS et al. Kistimonas scapharcae sp. nov., isolated from a dead ark clam (Scapharca broughtonii), and emended description of the genus Kistimonas. Int J Syst Evol Microbiol 2012;62:2865–2869 [CrossRef][PubMed]
    [Google Scholar]
  3. Mayer LM, Schick LL, Self RFL, Jumars PA, Findlay RH et al. Digestive environments of benthic macroinvertebrate guts: Enzymes, surfactants and dissolved organic matter. J Mar Res 1997;55:785–812 [CrossRef]
    [Google Scholar]
  4. Plante CJ, Coe KM, Plante RG. Isolation of surfactant-resistant bacteria from natural, surfactant-rich marine habitats. Appl Environ Microbiol 2008;74:5093–5099 [CrossRef][PubMed]
    [Google Scholar]
  5. Leuckart R. Verzeichniss der zur Fauna Helgoland's gehörenden wirbellosen Seethiere. In Frey H, Leuckart R. (editors) Beiträge Zur Kenntniss Wirbelloser Thiere Mit Besonderer Berucksichtigung Der Fauna Des Norddeutschen Meeres Braunschweig: F Vieweg und Sohn; 1847; pp.136–170
    [Google Scholar]
  6. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: ASM Press; 2007; pp.330–393
    [Google Scholar]
  7. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG et al. Current Protocols in Molecular Biology New York, NY: John Wiley & Sons; 2000
    [Google Scholar]
  8. Turner S, Pryer KM, Miao VP, Palmer JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 1999;46:327–338 [CrossRef][PubMed]
    [Google Scholar]
  9. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  10. Myers EW, Miller W. Optimal alignments in linear space. Comput Appl Biosci 1988;4:11–17 [CrossRef][PubMed]
    [Google Scholar]
  11. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007;24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  13. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  14. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  15. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;33:152–155
    [Google Scholar]
  16. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  17. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014;12:635–645 [CrossRef][PubMed]
    [Google Scholar]
  18. Svec P, Devriese LA, Enterococcus GI. Genus I. Enterococcus. In de Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey's Manual of Determinative Bacteriology, 2nd ed. US: Springer; 2009; pp.594–607
    [Google Scholar]
  19. Hänninen ML, Happonen I, Saari S, Jalava K. Culture and characteristics of Helicobacter bizzozeronii, a new canine gastric Helicobacter sp. Int J Syst Bacteriol 1996;46:160–166 [CrossRef][PubMed]
    [Google Scholar]
  20. Sarmiento-Rubiano LA, Berger B, Moine D, Zúñiga M, Pérez-Martínez G et al. Characterization of a novel Lactobacillus species closely related to Lactobacillus johnsonii using a combination of molecular and comparative genomics methods. BMC Genomics 2010;11:504 [CrossRef][PubMed]
    [Google Scholar]
  21. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  22. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002;4:770–773[PubMed]
    [Google Scholar]
  23. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  24. Altenburgera P, Kämpferb P, Makristathisc A, Lubitza W, Bussea H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996;47:39–52 [CrossRef]
    [Google Scholar]
  25. Stolz A, Busse HJ, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007;57:572–576 [CrossRef][PubMed]
    [Google Scholar]
  26. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI, Inc; 1990
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003137
Loading
/content/journal/ijsem/10.1099/ijsem.0.003137
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error