1887

Abstract

During the taxonomic investigation of exopolymer-producing halophilic bacteria, a rod-shaped, motile, Gram-stain-negative, halophilic bacterium, designated strain N4, was isolated from a saline soil located in northern Morocco. Optimal growth of the isolate was at 30–37 ºC and at pH 7.0–8.0, in the presence of 5–7 % (w/v) NaCl. Useful characteristics for the phenotypic differentiation of strain N4 from other Marinobacter species included α-chymotrypsin and α-glucosidase activities and the carbohydrate assimilation profile. The major fatty acids detected in strain N4 were C16:0 and C18:1ω9c and the predominant respiratory quinone was ubiquinone-9. Sequence analysis of the 16S rRNA gene indicated that strain N4 belonged to the genus Marinobacter and was closely related to the type strains of Marinobacter adhaerens (99.04 % similarity), Marinobacter salsuginis (98.97 %) and Marinobacter flavimaris (98.36 %). Phylogenetic analysis of the rpoD gene sequence also showed that the nearest neighbours of strain N4 were M. salsuginis (91.49 % similarity), M. adhaerens and M. flavimaris (90.63 %). Strain N4 showed 87.98 % average nucleotide identity with M. flavimaris and M. salsuginis, and 87.47 % with M. adhaerens. Regarding in-silico genome-to-genome distance, strain N4 showed DNA–DNA hybridization values of 33.30 % with M. adhaerens, 34.60 % with M. flavimaris and 34.70 % with M. salsuginis. The DNA G+C content of strain N4 was 57.3 mol%. Based on the results of phenotypic characterization, phylogenetic analysis and genome comparison, strain N4 represents a novel species of the genus Marinobacter, for which the name Marinobacter maroccanus sp. nov. is proposed. The type strain is N4 (=CECT 9525=LMG 30466).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003134
2018-11-22
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/1/227.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003134&mimeType=html&fmt=ahah

References

  1. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M et al. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 1992;42:568–576 [CrossRef][PubMed]
    [Google Scholar]
  2. Parte AC. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  3. Bowman JP, McMeekin TA, Gauthier G, Lafay C, Fernandez A et al. Genus VII. Marinobacter Gauthier, Lafay, Christen, Fernandez Acquaviva, Bonin and Bertrand 1992, 574VP. In Garrity GM, Brenner DJ, Krieg NR, Staley JT. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 2 New York: Springer; 2005; pp.459–464
    [Google Scholar]
  4. Ng HJ, López-Pérez M, Webb HK, Gomez D, Sawabe T et al. Marinobacter salarius sp. nov. and Marinobacter similis sp. nov., isolated from sea water. PLoS One 2014;9:1–11 [CrossRef][PubMed]
    [Google Scholar]
  5. Gao W, Cui Z, Li Q, Xu G, Jia X et al. Marinobacter nanhaiticus sp. nov., polycyclic aromatic hydrocarbon-degrading bacterium isolated from the sediment of the South China Sea. Antonie van Leeuwenhoek 2013;103:485–491 [CrossRef][PubMed]
    [Google Scholar]
  6. Kaeppel EC, Gärdes A, Seebah S, Grossart HP, Ullrich MS. Marinobacter adhaerens sp. nov., isolated from marine aggregates formed with the diatom Thalassiosira weissflogii. Int J Syst Evol Microbiol 2012;62:124–128 [CrossRef][PubMed]
    [Google Scholar]
  7. Montes MJ, Bozal N, Mercadé E. Marinobacter guineae sp. nov., a novel moderately halophilic bacterium from an Antarctic environment. Int J Syst Evol Microbiol 2008;58:1346–1349 [CrossRef][PubMed]
    [Google Scholar]
  8. Gu J, Cai H, Yu SL, Qu R, Yin B et al. Marinobacter gudaonensis sp. nov., isolated from an oil-polluted saline soil in a Chinese oilfield. Int J Syst Evol Microbiol 2007;57:250–254 [CrossRef][PubMed]
    [Google Scholar]
  9. Kim JO, Lee HJ, Han SI, Whang KS. Marinobacter halotolerans sp. nov., a halophilic bacterium isolated from a saltern crystallizing pond. Int J Syst Evol Microbiol 2017;67:460–465 [CrossRef][PubMed]
    [Google Scholar]
  10. Margesin R, Schinner F. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 2001;5:73–83 [CrossRef][PubMed]
    [Google Scholar]
  11. Boujida N, Palau M, Charfi S, El Moussaoui N, Manresa A et al. Isolation and characterization of halophilic bacteria producing exopolymers with emulsifying and antioxidant activities. Biocatal Agric Biotechnol 2018;16:631–637 [CrossRef]
    [Google Scholar]
  12. Moraine RA, Rogovin P. Kinetics of polysaccharide B-1459 fermentation. Biotechnol Bioeng 1966;8:511–524 [CrossRef]
    [Google Scholar]
  13. Arias S, del Moral A, Ferrer MR, Tallon R, Quesada E et al. Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles 2003;7:319–326 [CrossRef][PubMed]
    [Google Scholar]
  14. Barrow GI, Cowan F. Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993
    [Google Scholar]
  15. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966;45:493–496 [CrossRef][PubMed]
    [Google Scholar]
  16. MIDI Sherlock Microbial Identification System Operating Manual version 6.1 Newark, DE: MIDI Inc; 2008
    [Google Scholar]
  17. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  18. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  19. Tindall BJ. A Comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  20. Bozal N, Montes MJ, Tudela E, Jiménez F, Guinea J. Shewanella frigidimarina and Shewanella livingstonensis sp. nov. isolated from Antarctic coastal areas. Int J Syst Evol Microbiol 2002;52:195–205 [CrossRef][PubMed]
    [Google Scholar]
  21. Miñana-Galbis D, Pinzón DL, Lorén JG, Manresa A, Oliart-Ros RM. Reclassification of geobacillus pallidus (Scholz et al. 1988) Banat et al. 2004 as Aeribacillus pallidus gen. nov., comb. nov. Int J Syst Evol Microbiol 2010;60:1600–1604 [CrossRef][PubMed]
    [Google Scholar]
  22. de La Haba RR, Arahal DR, Márquez MC, Ventosa A. Phylogenetic relationships within the family Halomonadaceae based on comparative 23S and 16S rRNA gene sequence analysis. Int J Syst Evol Microbiol 2010;60:737–748 [CrossRef][PubMed]
    [Google Scholar]
  23. Martínez-Murcia AJ, Antón AI, Rodríguez-Valera F. Patterns of sequence variation in two regions of the 16S rRNA multigene family of Escherichia coli. Int J Syst Bacteriol 1999;49:601–610 [CrossRef][PubMed]
    [Google Scholar]
  24. Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A et al. Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 2000;146:2385–2394 [CrossRef][PubMed]
    [Google Scholar]
  25. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  26. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  27. Tritt A, Eisen JA, Facciotti MT, Darling AE. An integrated pipeline for de novo assembly of microbial genomes. PLoS One 2012;7:e42304 [CrossRef][PubMed]
    [Google Scholar]
  28. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  29. Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004;14:1394–1403 [CrossRef][PubMed]
    [Google Scholar]
  30. Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016;44:6614–6624 [CrossRef][PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  32. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  33. Rani S, Koh HW, Kim H, Rhee SK, Park SJ. Marinobacter salinus sp. nov., a moderately halophilic bacterium isolated from a tidal flat environment. Int J Syst Evol Microbiol 2017;67:205–211 [CrossRef][PubMed]
    [Google Scholar]
  34. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  35. Miñana-Galbis D, Farfàn M, Lorén JG, Fusté MC. The reference strain Aeromonas hydrophicla CIP 57.50 should be reclassified as Aeromonas salmonicida CIP 57.50. Int J Syst Evol Microbiol 2010;60:715–717 [CrossRef][PubMed]
    [Google Scholar]
  36. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010;12:1513–1530 [CrossRef][PubMed]
    [Google Scholar]
  37. Palau M, Boujida N, Manresa À, Miñana-Galbis D. Complete genome sequence of Marinobacter flavimaris LMG 23834T, which is potentially useful in bioremediation. Genome Announc 2018;6:e00273-1818 [CrossRef][PubMed]
    [Google Scholar]
  38. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  39. Yoon JH, Yeo SH, Kim IG, Oh TK. Marinobacter flavimaris sp. nov. and Marinobacter daepoensis sp. nov., slightly halophilic organisms isolated from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2004;54:1799–1803 [CrossRef][PubMed]
    [Google Scholar]
  40. Márquez MC, Ventosa A. Marinobacter hydrocarbonoclasticus Gauthier et al. 1992 and Marinobacter aquaeolei Nguyen et al. 1999 are heterotypic synonyms. Int J Syst Evol Microbiol 2005;55:1349–1351 [CrossRef][PubMed]
    [Google Scholar]
  41. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M et al. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 1992;42:568–576 [CrossRef][PubMed]
    [Google Scholar]
  42. Martín S, Márquez MC, Sánchez-Porro C, Mellado E, Arahal DR et al. Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. Int J Syst Evol Microbiol 2003;53:1383–1387 [CrossRef][PubMed]
    [Google Scholar]
  43. Antunes A, França L, Rainey FA, Huber R, Nobre MF et al. Marinobacter salsuginis sp. nov., isolated from the brine-seawater interface of the Shaban Deep, Red Sea. Int J Syst Evol Microbiol 2007;57:1035–1040 [CrossRef][PubMed]
    [Google Scholar]
  44. Romanenko LA, Schumann P, Rohde M, Zhukova NV, Mikhailov VV et al. Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. Int J Syst Evol Microbiol 2005;55:143–148 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003134
Loading
/content/journal/ijsem/10.1099/ijsem.0.003134
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error