1887

Abstract

A beige-pigmented, Gram-stain-negative, aerobic, non-motile, rod-shaped bacterium, named 24, was isolated from sludge of a pesticide manufacturing factory in Nantong, Jiangsu Province, China. 16S rRNA gene sequence analysis revealed that strain 24 shared highest similarity with Parapusillimonas granuli Ch07 (98.20 %), followed by Candidimonas nitroreducens SC-089 (98.07 %) and Paracandidimonas soli IMT-305 (98.03 %). Phylogenetic trees showed that strain 24 formed a distinct clade with Paracandidimonas soli IMT-305. The results of DNA–DNA hybridization tests showed that reassociation values were less than 45 % with respect to these closely related type strains. Strain 24 contained Q-8 and putrescine as the major respiratory quinone and polyamine, respectively. The main cellular fatty acids were summed feature 3 (C16 : 1ω7c/C16 : 1ω6c), summed feature 2 (iso-C16 : 1 I/C14 0 3-OH/C12 : 0 aldehyde), summed feature 8 (C18 : 1ω7c/C18 : 1ω6c) and C12 : 0. The polar lipid profile included phosphatidylmethylethanolamin, phosphatidylethanolamine, phosphatidylglycerol, one unidentified phospholipid and one unidentified aminolipid. The G+C content was 56.83 mol%. Combined data from phenotypic, phylogenetic and DNA–DNA relatedness studies demonstrated that strain 24 represents a novel species of the genus Paracandidimonas , for which the name Paracandidimonas caeni sp. nov. is proposed. The type strain is 24 (=CCTCC AB 2018057=KACC 19692).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003131
2018-11-22
2019-10-21
Loading full text...

Full text loading...

References

  1. Kämpfer P, Busse HJ, McInroy JA, Glaeser SP. Paracandidimonas soli gen. nov., sp. nov., isolated from soil. Int J Syst Evol Microbiol 2017;67: 1740– 1745 [CrossRef] [PubMed]
    [Google Scholar]
  2. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics London: John Wiley & Sons Ltd; 1991; pp. 115– 174
    [Google Scholar]
  3. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  4. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25: 4876– 4882 [CrossRef] [PubMed]
    [Google Scholar]
  5. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  6. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  7. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993;10: 1073– 1095 [CrossRef] [PubMed]
    [Google Scholar]
  8. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  9. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  10. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  11. Kim YJ, Kim MK, Im WT, Srinivasan S, Yang DC. Parapusillimonas granuli gen. nov., sp. nov., isolated from granules from a wastewater-treatment bioreactor. Int J Syst Evol Microbiol 2010;60: 1401– 1406 [CrossRef] [PubMed]
    [Google Scholar]
  12. Vaz-Moreira I, Figueira V, Lopes AR, de Brandt E, Vandamme P et al. Candidimonas nitroreducens gen. nov., sp. nov. and Candidimonas humi sp. nov., isolated from sewage sludge compost. Int J Syst Evol Microbiol 2011;61: 2238– 2246 [CrossRef] [PubMed]
    [Google Scholar]
  13. Srinivasan S, Kim MK, Sathiyaraj G, Kim YJ, Yang DC. Pusillimonas ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2010;60: 1783– 1787 [CrossRef] [PubMed]
    [Google Scholar]
  14. Lee M, Woo SG, Chae M, Ten LN. Pusillimonas soli sp. nov., isolated from farm soil. Int J Syst Evol Microbiol 2010;60: 2326– 2330 [CrossRef] [PubMed]
    [Google Scholar]
  15. Kang JP, Nguyen NL, Kim YJ, Hoang VA, Bae KS et al. Paralcaligenes ginsengisoli sp. nov., isolated from ginseng cultivated soil. Antonie Van Leeuwenhoek 2015;108: 619– 626 [CrossRef] [PubMed]
    [Google Scholar]
  16. Vandamme PA, Peeters C, Cnockaert M, Inganäs E, Falsen E et al. Bordetella bronchialis sp. nov., Bordetella flabilis sp. nov. and Bordetella sputigena sp. nov., isolated from human respiratory specimens, and reclassification of Achromobacter sediminum Zhang et al. 2014 as Verticia sediminum gen. nov., comb. nov. Int J Syst Evol Microbiol 2015;65: 3674– 3682 [CrossRef] [PubMed]
    [Google Scholar]
  17. Park MS, Park YJ, Jung JY, Lee SH, Park W et al. Pusillimonas harenae sp. nov., isolated from a sandy beach, and emended description of the genus Pusillimonas. Int J Syst Evol Microbiol 2011;61: 2901– 2906 [CrossRef] [PubMed]
    [Google Scholar]
  18. Jin L, Ko SR, Cui Y, Lee CS, Oh HM et al. Pusillimonas caeni sp. nov., isolated from a sludge sample of a biofilm reactor. Antonie van Leeuwenhoek 2017;110: 125– 132 [CrossRef] [PubMed]
    [Google Scholar]
  19. Felföldi T, Schumann P, Mentes A, Kéki Z, Máthé I et al. Caenimicrobium hargitense gen. nov., sp. nov., a new member of the family Alcaligenaceae (Betaproteobacteria) isolated from activated sludge. Int J Syst Evol Microbiol 2017;67: 627– 632 [CrossRef] [PubMed]
    [Google Scholar]
  20. Zhang DC, Busse HJ, Wieser C, Liu HC, Zhou YG et al. Candidimonas bauzanensis sp. nov., isolated from soil, and emended description of the genus Candidimonas Vaz-Moreira et al. 2011. Int J Syst Evol Microbiol 2012;62: 2084– 2089 [CrossRef] [PubMed]
    [Google Scholar]
  21. Kim SJ, Yoo SH, Weon HY, Kim YS, Anandham R et al. Paralcaligenes ureilyticus gen. nov., sp. nov. isolated from soil of a Korean ginseng field. J Microbiol 2011;49: 502– 507 [CrossRef] [PubMed]
    [Google Scholar]
  22. Kuncharoen N, Muramatsu Y, Shibata C, Kamakura Y, Nakagawa Y et al. Achromobacter aloeverae sp. nov., isolated from the root of Aloe vera (L.) Burm.f. Int J Syst Evol Microbiol 2017;67: 37– 41 [CrossRef] [PubMed]
    [Google Scholar]
  23. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ et al. ABySS: a parallel assembler for short read sequence data. Genome Res 2009;19: 1117– 1123 [CrossRef] [PubMed]
    [Google Scholar]
  24. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25: 1043– 1055 [CrossRef] [PubMed]
    [Google Scholar]
  25. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010;20: 265– 272 [CrossRef] [PubMed]
    [Google Scholar]
  26. Jeong HI, Jin HM, Jeon CO. Arenimonas aestuarii sp. nov., isolated from estuary sediment. Int J Syst Evol Microbiol 2016;66: 1527– 1532 [CrossRef] [PubMed]
    [Google Scholar]
  27. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37: 463– 464 [CrossRef]
    [Google Scholar]
  28. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  29. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996;42: 457– 469 [CrossRef]
    [Google Scholar]
  30. Taibi G, Schiavo MR, Gueli MC, Rindina PC, Muratore R et al. Rapid and simultaneous high-performance liquid chromatography assay of polyamines and monoacetylpolyamines in biological specimens. J Chromatogr B Biomed Sci Appl 2000;745: 431– 437 [CrossRef] [PubMed]
    [Google Scholar]
  31. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  32. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979;47: 87– 95 [CrossRef]
    [Google Scholar]
  33. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988;11: 1– 8 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003131
Loading
/content/journal/ijsem/10.1099/ijsem.0.003131
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error