1887

Abstract

Six Polynucleobacter ( Burkholderiaceae , Betaproteobacteria ) strains isolated from different freshwater lakes located across Europe were taxonomically investigated. Phylogenetic analyses based on 16S rRNA gene sequences assigns all six strains to the cryptic species complex PnecC within the genus Polynucleobacter . Analyses of partial glutamine synthetase (glnA) genes suggests that all six strains belong to the species-like taxon designated F15 in previous papers. Comparative genome analyses reveal that the six strains form a genomically coherent group characterized by whole-genome average nucleotide identity (gANI) values of >98 % but separated by gANI values of <88 % from the type strains and representatives of the 16 previously described Polynucleobacter species. In phylogenetic analyses based on nucleotide sequences of 319 orthologous genes, the six strains represent a monophyletic cluster that is clearly separated from all other described species. Genome sizes of the six strains range from 1.61 to 1.83 Mbp, which is smaller than genome sizes of the majority of type strains representing previously described Polynucleobacter species. By contrast, the G+C content of the DNA of the strains is well in the range of 44.8–46.6 mol% previously found for other type strains of species affiliated with the subgroup PnecC. Variation among the six strains representing the new species is evident in a number of traits. These include gene content differences, for instance regarding a gene cluster encoding anoxygenic photosynthesis, as well as phenotypic traits. We propose to name the new species represented by the six strains Polynucleobacter paneuropaeus sp. nov. and designate strain MG-25-Pas1-D2 (=DSM 103454 =CIP 111323) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003130
2018-11-22
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/1/203.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003130&mimeType=html&fmt=ahah

References

  1. Heckmann K, Schmidt HJ. Polynucleobacter necessarius gen. nov., sp. nov., an Obligately Endosymbiotic Bacterium Living in the Cytoplasm of Euplotes aediculatus. Int J Syst Bacteriol 1987;37:456–457 [CrossRef]
    [Google Scholar]
  2. Vannini C, Pöckl M, Petroni G, Wu QL, Lang E et al. Endosymbiosis in statu nascendi: close phylogenetic relationship between obligately endosymbiotic and obligately free-living Polynucleobacter strains (Betaproteobacteria). Environ Microbiol 2007;9:347–359 [CrossRef][PubMed]
    [Google Scholar]
  3. Hahn MW, Schmidt J, Pitt A, Taipale SJ, Lang E. Reclassification of four Polynucleobacter necessarius strains as representatives of Polynucleobacter asymbioticus comb. nov., Polynucleobacter duraquae sp. nov., Polynucleobacter yangtzensis sp. nov. and Polynucleobacter sinensis sp. nov., and emended description of Polynucleobacter necessarius. Int J Syst Evol Microbiol 2016;66:2883–2892 [CrossRef][PubMed]
    [Google Scholar]
  4. Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han SK. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquatic Microbial Ecology 2002;28:141–155 [CrossRef]
    [Google Scholar]
  5. Bahr M, Hobbie JE, Sogin ML. Bacterial diversity in an arctic lake: a freshwater SAR11 cluster. Aquatic Microbial Ecology 1996;11:271–277 [CrossRef]
    [Google Scholar]
  6. Percent SF, Frischer ME, Vescio PA, Duffy EB, Milano V et al. Bacterial community structure of acid-impacted lakes: what controls diversity?. Appl Environ Microbiol 2008;74:1856–1868 [CrossRef][PubMed]
    [Google Scholar]
  7. Burkert U, Warnecke F, Babenzien D, Zwirnmann E, Pernthaler J. Members of a readily enriched beta-proteobacterial clade are common in surface waters of a humic lake. Appl Environ Microbiol 2003;69:6550–6559 [CrossRef][PubMed]
    [Google Scholar]
  8. Crump BC, Armbrust EV, Baross JA. Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia river, its estuary, and the adjacent coastal ocean. Appl Environ Microbiol 1999;65:3192–3204[PubMed]
    [Google Scholar]
  9. Jezberová J, Jezbera J, Brandt U, Lindström ES, Langenheder S et al. Ubiquity of Polynucleobacter necessarius ssp. asymbioticus in lentic freshwater habitats of a heterogeneous 2000 km area. Environ Microbiol 2010;12:658–669 [CrossRef][PubMed]
    [Google Scholar]
  10. Wu QL, Hahn MW. Differences in structure and dynamics of Polynucleobacter communities in a temperate and a subtropical lake, revealed at three phylogenetic levels. FEMS Microbiol Ecol 2006;57:67–79 [CrossRef][PubMed]
    [Google Scholar]
  11. Hahn MW. Isolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones. Appl Environ Microbiol 2003;69:5248–5254 [CrossRef][PubMed]
    [Google Scholar]
  12. Hahn MW, Koll U, Jezberová J, Camacho A. Global phylogeography of pelagic Polynucleobacter bacteria: restricted geographic distribution of subgroups, isolation by distance and influence of climate. Environ Microbiol 2015;17:829–840 [CrossRef][PubMed]
    [Google Scholar]
  13. Jezbera J, Jezberová J, Koll U, Horňák K, Šimek K et al. Contrasting trends in distribution of four major planktonic betaproteobacterial groups along a pH gradient of epilimnia of 72 freshwater habitats. FEMS Microbiol Ecol 2012;81:467–479 [CrossRef][PubMed]
    [Google Scholar]
  14. Jezbera J, Jezberová J, Brandt U, Hahn MW. Ubiquity of Polynucleobacter necessarius subspecies asymbioticus results from ecological diversification. Environ Microbiol 2011;13:922–931 [CrossRef][PubMed]
    [Google Scholar]
  15. Hahn MW, Jezberová J, Koll U, Saueressig-Beck T, Schmidt J. Complete ecological isolation and cryptic diversity in Polynucleobacter bacteria not resolved by 16S rRNA gene sequences. Isme J 2016;10:1642–1655 [CrossRef][PubMed]
    [Google Scholar]
  16. Hahn MW, Schmidt J, Asiyo GS, Kyrpides NC, Woyke T et al. Reclassification of a Polynucleobacter cosmopolitanus strain isolated from tropical Lake Victoria as Polynucleobacter victoriensis sp. nov. Int J Syst Evol Microbiol 2017;67:5087–5093 [CrossRef][PubMed]
    [Google Scholar]
  17. Hahn MW, Lang E, Tarao M, Brandt U. Polynucleobacter rarus sp. nov., a free-living planktonic bacterium isolated from an acidic lake. Int J Syst Evol Microbiol 2011;61:781–787 [CrossRef][PubMed]
    [Google Scholar]
  18. Hahn MW, Lang E, Brandt U, Lünsdorf H, Wu QL et al. Polynucleobacter cosmopolitanus sp. nov., free-living planktonic bacteria inhabiting freshwater lakes and rivers. Int J Syst Evol Microbiol 2010;60:166–173 [CrossRef][PubMed]
    [Google Scholar]
  19. Hahn MW, Minasyan A, Lang E, Koll U, Spröer C. Polynucleobacter difficilis sp. nov., a planktonic freshwater bacterium affiliated with subcluster B1 of the genus Polynucleobacter. Int J Syst Evol Microbiol 2012;62:376–383 [CrossRef][PubMed]
    [Google Scholar]
  20. Hahn MW, Lang E, Brandt U, Spröer C. Polynucleobacter acidiphobus sp. nov., a representative of an abundant group of planktonic freshwater bacteria. Int J Syst Evol Microbiol 2011;61:788–794 [CrossRef][PubMed]
    [Google Scholar]
  21. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  22. Hahn MW, Stadler P, Wu QL, Pöckl M. The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 2004;57:379–390 [CrossRef][PubMed]
    [Google Scholar]
  23. Hahn MW, Huymann LR, Koll U, Schmidt J, Lang E et al. Polynucleobacter wuianus sp. nov., a free-living freshwater bacterium affiliated with the cryptic species complex PnecC. Int J Syst Evol Microbiol 2017;67:379–385 [CrossRef][PubMed]
    [Google Scholar]
  24. Hahn MW, Koll U, Karbon G, Schmidt J, Lang E. Polynucleobacter aenigmaticus sp. nov. isolated from the permanently anoxic monimolimnion of a temperate meromictic lake. Int J Syst Evol Microbiol 2017;67:4646–4654 [CrossRef][PubMed]
    [Google Scholar]
  25. Hahn MW, Karbon G, Koll U, Schmidt J, Lang E. Polynucleobacter sphagniphilus sp. nov. a planktonic freshwater bacterium isolated from an acidic and humic freshwater habitat. Int J Syst Evol Microbiol 2017;67:3261–3267 [CrossRef][PubMed]
    [Google Scholar]
  26. Hahn MW, Schmidt J, Koll U, Rohde M, Verbarg S et al. Silvanigrella aquatica gen. nov., sp. nov., isolated from a freshwater lake, description of Silvanigrellaceae fam. nov. and Silvanigrellales ord. nov., reclassification of the order Bdellovibrionales in the class Oligoflexia, reclassification of the families Bacteriovoracaceae and Halobacteriovoraceae in the new order Bacteriovoracales ord. nov., and reclassification of the family Pseudobacteriovoracaceae in the order Oligoflexales. Int J Syst Evol Microbiol 2017;67:2555–2568 [CrossRef][PubMed]
    [Google Scholar]
  27. Boscaro V, Kolisko M, Felletti M, Vannini C, Lynn DH et al. Parallel genome reduction in symbionts descended from closely related free-living bacteria. Nat Ecol Evol 2017;1:1160–1167 [CrossRef][PubMed]
    [Google Scholar]
  28. Pitt A, Schmidt J, Lang E, Whitman WB, Woyke T et al. Polynucleobacter meluiroseus sp. nov., a bacterium isolated from a lake located in the mountains of the Mediterranean island of Corsica. Int J Syst Evol Microbiol 2018;68:1975–1985 [CrossRef][PubMed]
    [Google Scholar]
  29. Hahn MW, Scheuerl T, Jezberová J, Koll U, Jezbera J et al. The passive yet successful way of planktonic life: genomic and experimental analysis of the ecology of a free-living Polynucleobacter population. PLoS One 2012;7:e32772 [CrossRef][PubMed]
    [Google Scholar]
  30. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005;102:2567–2572 [CrossRef][PubMed]
    [Google Scholar]
  31. Chen IA, Markowitz VM, Chu K, Palaniappan K, Szeto E et al. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res 2017;45:D507–D516 [CrossRef][PubMed]
    [Google Scholar]
  32. Mackiewicz P, Mackiewicz D, Kowalczuk M, Cebrat S. Flip-flop around the origin and terminus of replication in prokaryotic genomes. Genome Biol 2001;2:interactions1004.1–interactions1004.4 [CrossRef][PubMed]
    [Google Scholar]
  33. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2017;bbx108 [CrossRef][PubMed]
    [Google Scholar]
  34. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000;17:540–552 [CrossRef][PubMed]
    [Google Scholar]
  35. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES science gateway for inference of large phylogenetic trees. proceedings of the gateway computing environments workshop (GCE), 14 Nov 2010. New Orleans2010:1–8
    [Google Scholar]
  36. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  37. Hahn MW, Lang E, Brandt U, Wu QL, Scheuerl T. Emended description of the genus Polynucleobacter and the species Polynucleobacter necessarius and proposal of two subspecies, P. necessarius subsp. necessarius subsp. nov. and P. necessarius subsp. asymbioticus subsp. nov. Int J Syst Evol Microbiol 2009;59:2002–2009 [CrossRef][PubMed]
    [Google Scholar]
  38. Hahn MW, Scheuerl T, Jezberová J, Koll U, Jezbera J et al. The passive yet successful way of planktonic life: genomic and experimental analysis of the ecology of a free-living polynucleobacter population. PLoS One 2012;7:e32772 [CrossRef][PubMed]
    [Google Scholar]
  39. Hahn MW, Schmidt J, Pitt A, Taipale SJ, Lang E. Reclassification of four Polynucleobacter necessarius strains as representatives of Polynucleobacter asymbioticus comb. nov., Polynucleobacter duraquae sp. nov., Polynucleobacter yangtzensis sp. nov. and Polynucleobacter sinensis sp. nov., and emended description of Polynucleobacter necessarius. Int J Syst Evol Microbiol 2016;66:2883–2892 [CrossRef][PubMed]
    [Google Scholar]
  40. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985;49:1–7[PubMed]
    [Google Scholar]
  41. Hahn MW, Koll U, Schmidt J, Huymann LR, Karbon G et al. in press Polynucleobacter hirudinilacicola sp. nov. and Polynucleobacter campilacus sp. nov., both isolated from freshwater systems. Int J Syst Evol Microbiol 2018;68:2593–2601 [CrossRef][PubMed]
    [Google Scholar]
  42. Meincke L, Copeland A, Lapidus A, Lucas S, Berry KW et al. Complete genome sequence of Polynucleobacter necessarius subsp. asymbioticus type strain (QLW-P1DMWA-1(T)). Stand Genomic Sci 2012;6:74–83 [CrossRef][PubMed]
    [Google Scholar]
  43. Boscaro V, Felletti M, Vannini C, Ackerman MS, Chain PS et al. Polynucleobacter necessarius, a model for genome reduction in both free-living and symbiotic bacteria. Proc Natl Acad Sci USA 2013;110:18590–18595 [CrossRef][PubMed]
    [Google Scholar]
  44. Janssen PJ, van Houdt R, Moors H, Monsieurs P, Morin N et al. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 2010;5:e10433 [CrossRef][PubMed]
    [Google Scholar]
  45. Hoetzinger M, Schmidt J, Jezberová J, Koll U, Hahn MW. Microdiversification of a pelagic Polynucleobacter species is mainly driven by acquisition of genomic islands from a partially interspecific gene pool. Appl Environ Microbiol 2017;83: [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003130
Loading
/content/journal/ijsem/10.1099/ijsem.0.003130
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error