1887

Abstract

A novel Gram-stain-negative, aerobic, non-spore-forming, non-motile and rod-shaped bacterial strain, 7QSK02, was isolated from forest soil of Dinghushan Biosphere Reserve, Guangdong Province, China. It grew at 12–37 °C, at pH 4.0–7.5 and in the presence of 0–1.0 % (w/v) NaCl on R2A agar medium, with optimum growth at 28 °C, pH 5.5 and 0 % NaCl. Strain 7QSK02 was closely related to members of the genus Paraburkholderia : P. acidipaludis NBRC 101816 (98.1 % 16S rRNA gene sequence similarity), P. piptadeniae STM 7183 (97.6 %), P. kururiensis JCM 10599 (97.3 %), P. caballeronis TNe-841 (97.3 %) and P. diazotrophica JPY461 (97.1 %). 16S rRNA gene sequence analysis showed that strain 7QSK02 and two closely strains, P. kururiensis JCM 10599 and P. caballeronis TNe-841, formed a clade within the genus Paraburkholderia , but was clearly separated from the established species. The genomic G+C content of strain 7QSK02 was 64.9 mol% based on total genome calculations. The average nucleotide identity and digital DNA–DNA hybridization value for the complete genomes were 79.2–81.5 and 23.2–24.9 % between strain 7QSK02 and its closely related species listed above. Strain 7QSK02 contained ubiquinone 8 as the major respiratory quinone. Major fatty acids were C16 : 0, C17 : 0 cyclo and C19 : 0 cyclo ω8c. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylmethylethanolamine, one unidentified aminophospholipid, aminolipid and polar lipid. The phenotypic, chemotaxonomic and phylogenetic properties, and genome analysis suggest that strain 7QSK02 represents a novel species of the genus Paraburkholderia , for which the name Paraburkholderia phosphatilytica sp. nov. is proposed. The type strain is 7QSK02 (=GDMCC 1.1283=CGMCC 1.15470=KCTC 62473).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003129
2018-11-22
2019-10-20
Loading full text...

Full text loading...

References

  1. Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H et al. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 1992;36:1251–1275 [CrossRef][PubMed]
    [Google Scholar]
  2. Dobritsa AP, Samadpour M. Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia. Int J Syst Evol Microbiol 2016;66:2836–2846 [CrossRef][PubMed]
    [Google Scholar]
  3. Lopes-Santos L, Castro DBA, Ferreira-Tonin M, Corrêa DBA, Weir BS et al. Reassessment of the taxonomic position of Burkholderia andropogonis and description of Robbsia andropogonis gen. nov., comb. nov. Antonie van Leeuwenhoek 2017;110:727–736 [CrossRef][PubMed]
    [Google Scholar]
  4. Estrada-de Los Santos P, Palmer M, Chávez-Ramírez B, Beukes C, Steenkamp ET et al. Whole Genome Analyses Suggests that Burkholderia sensu lato Contains Two Additional Novel Genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): Implications for the Evolution of Diazotrophy and Nodulation in the Burkholderiaceae. Genes 2018;9:389 [CrossRef][PubMed]
    [Google Scholar]
  5. Sawana A, Adeolu M, Gupta RS. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 2014;5:429 [CrossRef][PubMed]
    [Google Scholar]
  6. Caballero-Mellado J, Martínez-Aguilar L, Paredes-Valdez G, Santos PE. Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol 2004;54:1165–1172 [CrossRef][PubMed]
    [Google Scholar]
  7. Reis VM, Estrada-de Los Santos P, Tenorio-Salgado S, Vogel J, Stoffels M et al. Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 2004;54:2155–2162 [CrossRef][PubMed]
    [Google Scholar]
  8. Chen WM, James EK, Coenye T, Chou JH, Barrios E et al. Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol 2006;56:1847–1851 [CrossRef][PubMed]
    [Google Scholar]
  9. Perin L, Martínez-Aguilar L, Paredes-Valdez G, Baldani JI, Estrada-de Los Santos P et al. Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize. Int J Syst Evol Microbiol 2006;56:1931–1937 [CrossRef][PubMed]
    [Google Scholar]
  10. Chen WM, de Faria SM, James EK, Elliott GN, Lin KY et al. Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int J Syst Evol Microbiol 2007;57:1055–1059 [CrossRef][PubMed]
    [Google Scholar]
  11. Aizawa T, ve NB, Nakajima M, Sunairi M. Burkholderia heleia sp. nov., a nitrogen-fixing bacterium isolated from an aquatic plant, Eleocharis dulcis, that grows in highly acidic swamps in actual acid sulfate soil areas of Vietnam. Int J Syst Evol Microbiol 2010;60:1152–1157 [CrossRef][PubMed]
    [Google Scholar]
  12. Lv YY, Chen MH, Xia F, Wang J, Qiu LH. Paraburkholderia pallidirosea sp. nov., isolated from a monsoon evergreen broad-leaved forest soil. Int J Syst Evol Microbiol 2016;66:4537–4542 [CrossRef][PubMed]
    [Google Scholar]
  13. Bournaud C, Moulin L, Cnockaert M, Faria S, Prin Y et al. Paraburkholderia piptadeniae sp. nov. and Paraburkholderia ribeironis sp. nov., two root-nodulating symbiotic species of Piptadenia gonoacantha in Brazil. Int J Syst Evol Microbiol 2017;67:432–440 [CrossRef][PubMed]
    [Google Scholar]
  14. Gao Z, Yuan Y, Xu L, Liu R, Chen M et al. Paraburkholderia caffeinilytica sp. nov., isolated from the soil of a tea plantation. Int J Syst Evol Microbiol 2016;66:4185–4190 [CrossRef][PubMed]
    [Google Scholar]
  15. Choi GM, Im WT. Paraburkholderia azotifigens sp. nov., a nitrogen-fixing bacterium isolated from paddy soil. Int J Syst Evol Microbiol 2018;68:310–316 [CrossRef][PubMed]
    [Google Scholar]
  16. Weber CF, King GM. Volcanic Soils as Sources of Novel CO-Oxidizing Paraburkholderia and Burkholderia: Paraburkholderia hiiakae sp. nov., Paraburkholderia metrosideri sp. nov., Paraburkholderia paradisi sp. nov., Paraburkholderia peleae sp. nov., and Burkholderia alpina sp. nov. a Member of the Burkholderia cepacia Complex. Front Microbiol 2017;8:207 doi [CrossRef][PubMed]
    [Google Scholar]
  17. Lee Y, Jeon CO. Paraburkholderia aromaticivorans sp. nov., an aromatic hydrocarbon-degrading bacterium, isolated from gasoline-contaminated soil. Int J Syst Evol Microbiol 2018;68:1251–1257 [CrossRef][PubMed]
    [Google Scholar]
  18. Gao ZH, Zhong SF, Lu ZE, Xiao SY, Qiu LH. Paraburkholderia caseinilytica sp. nov., isolated from the pine and broad-leaf mixed forest soil. Int J Syst Evol Microbiol 2018;68:1963–1968 [CrossRef][PubMed]
    [Google Scholar]
  19. Huo Y, Kang JP, Kim YJ, Yang DC. Paraburkholderia panacihumi sp. nov., an isolate from ginseng-cultivated soil, is antagonistic against root rot fungal pathogen. Arch Microbiol 2018;200:1151–1158 [CrossRef][PubMed]
    [Google Scholar]
  20. de Meyer SE, Cnockaert M, Moulin L, Howieson JG, Vandamme P. Symbiotic and non-symbiotic Paraburkholderia isolated from South African Lebeckia ambigua root nodules and the description of Paraburkholderia fynbosensis sp. nov. Int J Syst Evol Microbiol 2018;68:2607–2614 doi [CrossRef][PubMed]
    [Google Scholar]
  21. Delong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992;89:5685–5689 [CrossRef][PubMed]
    [Google Scholar]
  22. Spilker T, Baldwin A, Bumford A, Dowson CG, Mahenthiralingam E et al. Expanded multilocus sequence typing for burkholderia species. J Clin Microbiol 2009;47:2607–2610 [CrossRef][PubMed]
    [Google Scholar]
  23. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  24. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  25. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  27. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  28. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  30. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 2014;64:316–324 [CrossRef][PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  32. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  33. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  34. Harley JP, Prescott LM. Laboratory Exercises in Microbiology, 5th ed. New York: McGraw-Hill; 2002
    [Google Scholar]
  35. Brown AE. Benson’s Microbiological Applications: Laboratory Manual in General Microbiology, 4th ed. New York: McGraw-Hill; 1985
    [Google Scholar]
  36. Atlas RM. Composition of media. In Parks LC. (editor) Handbook of Microbiology Media, 2nd. Boca Raton, FL: CRC Press; 1993
    [Google Scholar]
  37. Kim SJ, Ahn JH, Weon HY, Hong SB, Seok SJ et al. Parasegetibacter terrae sp. nov., isolated from paddy soil and emended description of the genus Parasegetibacter. Int J Syst Evol Microbiol 2015;65:113–116 [CrossRef][PubMed]
    [Google Scholar]
  38. Pikovskaya RI. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 1948;17:362–370
    [Google Scholar]
  39. Edi-Premono M, Moawad AM, Vlek PLG. Effect of phosphate-solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indones J Crop Sci 1996;11:13–23
    [Google Scholar]
  40. Vyas P, Rahi P, Chauhan A, Gulati A. Phosphate solubilization potential and stress tolerance of Eupenicillium parvum from tea soil. Mycol Res 2007;111:931–938 [CrossRef][PubMed]
    [Google Scholar]
  41. Nahas E. Factors determining rock phosphate solubilization by microorganisms isolated from soil. World J Microbiol Biotechnol 1996;12:567–572 [CrossRef][PubMed]
    [Google Scholar]
  42. Vassilev N, Vassileva M, Nikolaeva I. Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 2006;71:137–144 [CrossRef][PubMed]
    [Google Scholar]
  43. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16:584–586[PubMed]
    [Google Scholar]
  44. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38:358–361 [CrossRef]
    [Google Scholar]
  45. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  46. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
    [Google Scholar]
  47. Aizawa T, Bao ve N, Vijarnsorn P, Nakajima M, Sunairi M. Burkholderia acidipaludis sp. nov., aluminum-tolerant bacteria isolated from Chinese water chestnut (Eleocharis dulcis) growing in highly acidic swamps in South-East Asia. Int J Syst Evol Microbiol 2010;60:2036–2041 [CrossRef][PubMed]
    [Google Scholar]
  48. Sheu SY, Chou JH, Bontemps C, Elliott GN, Gross E et al. Burkholderia diazotrophica sp. nov., isolated from root nodules of Mimosa spp. Int J Syst Evol Microbiol 2013;63:435–441 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003129
Loading
/content/journal/ijsem/10.1099/ijsem.0.003129
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error