1887

Abstract

Two alkaliphilic and moderately halophilic bacterial strains B16-10 and Z23-18 characterized by optimal growth at pH 9.0–10.0 and 5 % (w/v) NaCl, were isolated from the rhizosphere soil of the bayonet grass (Bolboschoenus maritimus) in the Kiskunság National Park, Hungary. Cells of both strains stained Gram-positive, were motile straight rods, and formed terminal, ellipsoidal endospores with swollen sporangia. The isolates were facultative anaerobic, catalase positive, oxidase negative. Both strains contained meso-diaminopimelic acid as diagnostic diaminoacid of the peptidoglycan. Menaquinone-7 (MK-7) was the predominant isoprenoid quinone. Anteiso-C15 : 0, C16 : 1ω11c and iso-C14 : 0 were the major cellular fatty acids. The DNA G+C content of both strains was 35.8 mol%. The 16S rRNA gene based phylogenetic analysis revealed that the facultative anaerobic strains B16-10 and Z23-18 showed the highest similarities to the type strains of anaerobic Anaerobacillus isosaccharinicus NB2006 (98.7 and 99.1 %), A. macyae JMM-4 (98.2 and 98.4 %), A. alkalidiazotrophicus MS 6 (97.7 and 98.4 %), A. alkalilacustris Z-0521 (97.5 and 98.3 %) and A. arseniciselenatis DSM 15340 (97.5 and 98.2 %). However, the distinctive phenotypic and genetic results of this study confirmed that strains B16-10 and Z23-18 represent a novel species, for which the name Anaerobacillus alkaliphilus sp. nov. is proposed. The type strain is B16-10 (=DSM 29790=NCAIM B 02608).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003128
2019-01-23
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/3/631.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003128&mimeType=html&fmt=ahah

References

  1. Gordon RE, Haynes WC, Pang CH. The Genus Bacillus US Department of Agriculture Handbook; 1973; pp.109–126
    [Google Scholar]
  2. Ash C, Farrow JAE, Wallbanks S, Collins MD. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 1991;13:202–206 [CrossRef]
    [Google Scholar]
  3. Nielsen P, Rainey FA, Outtrup H, Priest FG, Fritze D. Comparative 16S rDNA sequence analysis of some alkaliphilic bacilli and the establishment of a sixth rRNA group within the genus Bacillus. FEMS Microbiol Lett 1994;117:61–65 [CrossRef]
    [Google Scholar]
  4. Zavarzina DG, Tourova TP, Kolganova TV, Boulygina ES, Zhilina TN. Description of Anaerobacillus alkalilacustre gen. nov., sp. nov. Strictly anaerobic diazotrophic bacillus isolated from soda lake and transfer of Bacillus arseniciselenatis, Bacillus macyae, and Bacillus alkalidiazotrophicus to Anaerobacillus as the new combinations A. arseniciselenatis comb. nov., A. macyae comb. nov., and A. alkalidiazotrophicus comb. nov. Microbiology 2009;78:723–731 [CrossRef]
    [Google Scholar]
  5. Duckworth AW, Grant WD, Jones BE, Steenbergen R. Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 1996;19:181–191 [CrossRef]
    [Google Scholar]
  6. Mwirichia R, Muigai AW, Tindall B, Boga HI, Stackebrandt E. Isolation and characterisation of bacteria from the haloalkaline Lake Elmenteita, Kenya. Extremophiles 2010;14:339–348 [CrossRef][PubMed]
    [Google Scholar]
  7. Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD et al. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 2014;18:791–809 [CrossRef][PubMed]
    [Google Scholar]
  8. Switzer Blum J, Burns Bindi A, Buzzelli J, Stolz JF, Oremland RS. Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 1998;171:19–30 [CrossRef][PubMed]
    [Google Scholar]
  9. Sorokin DY, van Pelt S, Tourova TP. Utilization of aliphatic nitriles under haloalkaline conditions by Bacillus alkalinitrilicus sp. nov. isolated from soda solonchak soil. FEMS Microbiol Lett 2008;288:235–240 [CrossRef][PubMed]
    [Google Scholar]
  10. Santini JM, Streimann IC, vanden Hoven RN. Bacillus macyae sp. nov., an arsenate-respiring bacterium isolated from an Australian gold mine. Int J Syst Evol Microbiol 2004;54:2241–2244 [CrossRef][PubMed]
    [Google Scholar]
  11. Wang JP, Liu B, Liu GH, Cb G, Chen QQ et al. Genome sequence of Anaerobacillus macyae JMM-4T (DSM 16346), the first genomic information of the newly established genus Anaerobacillus. Genome 2015;3:e00922-15
    [Google Scholar]
  12. Sorokin ID, Kravchenko IK, Tourova TP, Kolganova TV, Boulygina ES et al. nov., a diazotrophic, low-salt-tolerant alkaliphile isolated from Mongolian soda soil. Int J Syst Evol Microbiol 2008;58:2459–2464
    [Google Scholar]
  13. Bassil NM, Lloyd JR. Anaerobacillus isosaccharinicus sp. nov., an alkaliphilic bacterium which degrades isosaccharinic acid. Int J Syst Evol Microbiol 2018; [CrossRef][PubMed]
    [Google Scholar]
  14. Bárány A, Szili-Kovács T, Krett G, Füzy A, Márialigeti K et al. Metabolic activity and genetic diversity of microbial communities inhabiting the rhizosphere of halophyton plants. Acta Microbiol Immunol Hung 2014;61:347–361 [CrossRef][PubMed]
    [Google Scholar]
  15. Borsodi AK, Tóth E, Aszalós JM, Bárány Á, Schumann P et al. Bacillus kiskunsagensis sp. nov., a novel alkaliphilic and moderately halophilic bacterium isolated from soda soil. Int J Syst Evol Microbiol 2017;67:3490–3495 [CrossRef][PubMed]
    [Google Scholar]
  16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  20. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993;10:1073–1095 [CrossRef][PubMed]
    [Google Scholar]
  21. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 2011;27:578–579 [CrossRef][PubMed]
    [Google Scholar]
  22. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  23. Borsodi AK, Pollák B, Kéki Z, Rusznyák A, Kovács AL et al. Bacillus alkalisediminis sp. nov., an alkaliphilic and moderately halophilic bacterium isolated from sediment of extremely shallow soda ponds. Int J Syst Evol Microbiol 2011;61:1880–1886 [CrossRef][PubMed]
    [Google Scholar]
  24. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  25. Bürgmann H, Widmer F, von Sigler W, Zeyer J. New molecular screening tools for analysis of free-living diazotrophs in soil. Appl Environ Microbiol 2004;70:240–247 [CrossRef][PubMed]
    [Google Scholar]
  26. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015;31:3691–3693 [CrossRef][PubMed]
    [Google Scholar]
  27. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  28. Logan NA, Berge O, Bishop AH, Busse HJ, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009;59:2114–2121 [CrossRef][PubMed]
    [Google Scholar]
  29. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992;8:451–452 [CrossRef][PubMed]
    [Google Scholar]
  30. Murray RGE, Doetsch RN, Robinov CF. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: ASM; 1994; pp.21–41
    [Google Scholar]
  31. Borsodi AK, Micsinai A, Kovács G, Tóth E, Schumann P et al. Pannonibacter phragmitetus gen. nov., sp. nov., a novel alkalitolerant bacterium isolated from decomposing reed rhizomes in a Hungarian soda lake. Int J Syst Evol Microbiol 2003;53:555–561 [CrossRef][PubMed]
    [Google Scholar]
  32. Ohad I, Danon D, Hestrin S. The use of shadow-casting technique for measurement of the width of elongated particles. J Cell Biol 1963;17:321–326 [CrossRef][PubMed]
    [Google Scholar]
  33. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria Cambridge University Press: Cambridge; 2003
    [Google Scholar]
  34. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: ASM; 1994; pp.603–711
    [Google Scholar]
  35. Standard Methods for the Examination for Water and Wastewater, 14th ed. Method 420 1975; p.434
    [Google Scholar]
  36. Sugár Éva, Tatár E, Záray G, Mihucz VG. Field separation‐based speciation analysis of inorganic arsenic in public well water in Hungary. Microchem J 2013;107:131–135
    [Google Scholar]
  37. Le XC, Yalçin S, Ma M. Speciation of submicrogram per litre levels of arsenic in water: on-site species separation integrated with sample collection. Environ Sci Technol 2000;34:2342–2347
    [Google Scholar]
  38. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983;29:319–322 [CrossRef]
    [Google Scholar]
  39. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  40. Stead DE, Sellwood JE, Wilson J, Viney I. Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Bacteriol 1992;72:315–321 [CrossRef]
    [Google Scholar]
  41. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979;47:87–95 [CrossRef]
    [Google Scholar]
  42. De Vos P. Order I. Bacillales Prévot 1953, 60AL. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 3 The Firmicutes USA: Springer; 2009; pp.20
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003128
Loading
/content/journal/ijsem/10.1099/ijsem.0.003128
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error