Bacillus safensis subsp. osmophilus subsp. nov., isolated from condensed milk, and description of Bacillus safensis subsp. safensis subsp. nov. Free

Abstract

A bacterial strain, designated BC09, was isolated from a contaminated sample of condensed milk. Phylogenetic analyses based on 16S rRNA gene sequences placed strain BC09 into the genus Bacillus with its closest relatives being Bacillus safensis and Bacillus australimaris with 100 and 99.9 % similarity, respectively. Analysis of the gyrB gene confirmed the closeness of strain BC09 with respect to the species B. safensis since it presented 97.8 and 95.2 % similarity values, respectively, to the type strains of B. safensis and B. australimaris. DNA–DNA hybridization confirmed these results showing averages of 67 and 56 %, respectively, between strain BC09 and the type strains of B. safensis and B. australimaris. Average nucleotide identity blast values obtained for BC09 compared to the closest relative type strains were 95.7 and 67.6 %, respectively, and predicted DNA–DNA hybridization values were 93.1 and 51.9 %, respectively. However, strain BC09 differs from the type strains of its closest relatives in several phenotypic characteristics. MK-7 was the only menaquinone detected and iso-C15:0 and anteiso-C15:0 were the major fatty acids. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, two unidentified phospholipids, two unidentifed glycolipids, three unidentified lipids and one unidentifed phosphoglycolipid. Meso-diaminopimelic acid was detected in the peptidoglycan. The G+C content was 40.9 mol%. Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain BC09 represents a new subspecies of B. safensis, for which the name Bacillus safensis subsp. osmophilus subsp. nov. is proposed. The type strain is BC09 (=LMG 30124, =CECT 9344).

Keyword(s): Bacillus , Bacillus safensis , milk and Spain
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003126
2018-11-21
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/1/189.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003126&mimeType=html&fmt=ahah

References

  1. Logan NA, Bacillus VPD. Bergey's Manual of Systematics of Archaea and Bacteria vol. 163 John Wiley & Sons, Inc., in association with Bergey's Manual Trust; 2015
    [Google Scholar]
  2. Martinez BA, Stratton J, Bianchini A. Isolation and genetic identification of spore-forming bacteria associated with concentrated-milk processing in Nebraska. J Dairy Sci 2017; 100:919–932 [View Article][PubMed]
    [Google Scholar]
  3. Doll EV, Scherer S, Wenning M. Spoilage of Microfiltered and Pasteurized Extended Shelf Life Milk Is Mainly Induced by Psychrotolerant Spore-Forming Bacteria that often Originate from Recontamination. Front Microbiol 2017; 8:135 [View Article][PubMed]
    [Google Scholar]
  4. Coorevits A, Logan NA, Dinsdale AE, Halket G, Scheldeman P et al. Bacillus thermolactis sp. nov., isolated from dairy farms, and emended description of Bacillus thermoamylovorans. Int J Syst Evol Microbiol 2011; 61:1954–1961 [View Article][PubMed]
    [Google Scholar]
  5. Miller RA, Beno SM, Kent DJ, Carroll LM, Martin NH et al. Bacillus wiedmannii sp. nov., a psychrotolerant and cytotoxic Bacillus cereus group species isolated from dairy foods and dairy environments. Int J Syst Evol Microbiol 2016; 66:4744–4753 [View Article][PubMed]
    [Google Scholar]
  6. Doetsch RN. Determinative methods of light microscopy. In Gerdhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981 pp. 21–33
    [Google Scholar]
  7. Relman DA, Falkow S. Identification of uncultured microorganisms: expanding the spectrum of characterized microbial pathogens. Infect Agents Dis 1992; 1:245–253[PubMed]
    [Google Scholar]
  8. Rossi M, Debruyne L, Zanoni RG, Manfreda G, Revez J et al. Campylobacter avium sp. nov., a hippurate-positive species isolated from poultry. Int J Syst Evol Microbiol 2009; 59:2364–2369 [View Article][PubMed]
    [Google Scholar]
  9. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  10. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  11. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  12. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  14. Rogers JS, Swofford DL. A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. Syst Biol 1998; 47:77–89 [View Article][PubMed]
    [Google Scholar]
  15. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  16. Dunlap CA, Bowman MJ, Schisler DA, Rooney AP. Genome analysis shows Bacillus axarquiensis is not a later heterotypic synonym of Bacillus mojavensis; reclassification of Bacillus malacitensis and Brevibacterium halotolerans as heterotypic synonyms of Bacillus axarquiensis. Int J Syst Evol Microbiol 2016; 66:2438–2443 [View Article][PubMed]
    [Google Scholar]
  17. Tindall BJ. The consequences of Bacillus axarquiensis Ruiz-García et al. 2005, Bacillus malacitensis Ruiz-García et al. 2005 and Brevibacterium halotolerans Delaporte and Sasson 1967 (Approved Lists 1980) being treated as heterotypic synonyms. Int J Syst Evol Microbiol 2017; 67:175–176 [View Article][PubMed]
    [Google Scholar]
  18. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  19. Willems A, Doignon-Bourcier F, Goris J, Coopman R, de Lajudie P et al. DNA-DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 2001; 51:1315–1322 [View Article][PubMed]
    [Google Scholar]
  20. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  21. Nakamura LK, Roberts MS, Cohan FM. Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizizenii subsp. nov. Int J Syst Bacteriol 1999; 49:1211–1215 [View Article][PubMed]
    [Google Scholar]
  22. Rooney AP, Price NP, Ehrhardt C, Swezey JL, Bannan JD. Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. Int J Syst Evol Microbiol 2009; 59:2429–2436 [View Article][PubMed]
    [Google Scholar]
  23. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  24. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  25. Cuccuru G, Orsini M, Pinna A, Sbardellati A, Soranzo N et al. Orione, a web-based framework for NGS analysis in microbiology. Bioinformatics 2014; 30:1928–1929 [View Article][PubMed]
    [Google Scholar]
  26. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article][PubMed]
    [Google Scholar]
  27. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  30. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
  31. Dunlap CA, Schisler DA, Perry EB, Connor N, Cohan FM et al. Bacillus swezeyi sp. nov. and Bacillus haynesii sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 2017; 67:2720–2725 [View Article][PubMed]
    [Google Scholar]
  32. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:281–285 [View Article][PubMed]
    [Google Scholar]
  33. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  34. Satomi M, La Duc MT, Venkateswaran K. Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. Int J Syst Evol Microbiol 2006; 56:1735–1740 [View Article][PubMed]
    [Google Scholar]
  35. Liu Y, Lai Q, du J, Shao Z. Bacillus zhangzhouensis sp. nov. and Bacillus australimaris sp. nov. Int J Syst Evol Microbiol 2016; 66:1193–1199 [View Article][PubMed]
    [Google Scholar]
  36. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc 1990
    [Google Scholar]
  37. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  38. Rhuland LE, Work E, Denman RF, Hoare DS. The Behavior of the Isomers of α,ε-Diaminopimelic Acid on Paper Chromatograms. J Am Chem Soc 1955; 77:4844–4846 [View Article]
    [Google Scholar]
  39. Schumann P. Peptidoglycan Structure. In Rainey F, Oren A. (editors) Taxonomy of Prokaryotes, Methods in Microbiology vol. 38 London: Academic Press; 2011 pp. 101–129
    [Google Scholar]
  40. Logan NA, Berge O, Bishop AH, Busse HJ, de Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  41. Claus D, Berkeley RCW. Genus Bacillus Cohn 1872, 174AL. In Sneath PHA, Mair NS, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology, vol. 2 Williams & Wilkins: Baltimore; 1986 pp. 1105–1139
    [Google Scholar]
  42. Lapage SP, Sneath PHA, Lessel EF, Skerman VBD, Seeliger HPR et al. International Code of Nomenclature of Bacteria (1990 Revision) Washington, DC: American Society for Microbiology; 1992
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003126
Loading
/content/journal/ijsem/10.1099/ijsem.0.003126
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed