Flavobacterium tibetense sp. nov., isolated from a wetland Free

Abstract

A novel, Gram-stain-negative, non-motile and rod-shaped bacterium, designated YH5, was isolated from the YonghuCo wetland on the Tibetan Plateau. The strain was able to grow optimally with 1 % (w/v) NaCl and tolerated up to 3 % NaCl. Growth occurred at pH 6–9 (optimum pH 7) and 10–37 °C (optimum 30 °C). Vitamins were not required for growth. The major polar lipid of strain YH5 was phosphatidylethanolamine. The predominant respiratory quinone was menaquinone 6 (MK-6). The major fatty acids were iso-C15 : 0, C16 : 0 10-methyl and/or iso-C17 : 1ω9c, iso-C17 : 0 3-OH, iso-C15 : 1 G and iso-C15 : 0 3-OH. Genome sequencing revealed a genome size of 2.74 Mbp and a G+C content of 33.3 mol%. Analysis of 16S rRNA gene sequences showed that strain YH5 belonged to the genus Flavobacterium , with the closest neighbours Flavobacterium luticocti xz20 (96.7 % similarity), Flavobacterium jejuense EC11 (96.4 %), Flavobacterium jumunjinense HME7102 (95.9 %) and Flavobacterium dongtanense LW30 (95.6 %). DNA–DNA relatedness between strain YH5 and the closest phylogenetically related strain F. luticocti xz20 was 27.0 %. Strain YH5 was clearly distinguished from the reference type strains based on phylogenetic analysis, DNA–DNA hybridization, fatty acid composition and a range of physiological and biochemical characteristics. Based on its phenotypic and chemotaxonomic characteristics, strain YH5 is classified as a representative of a novel species of the genus Flavobacterium , for which the name Flavobacterium tibetense sp. nov. is proposed. The type strain is YH5 (=CICC 24247=KCTC 62174).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003124
2018-11-20
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/1/165.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003124&mimeType=html&fmt=ahah

References

  1. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM et al. (editors) Bergey’s Manual of Determinative Bacteriology Baltimore: Williams & Wilkins; 1923
    [Google Scholar]
  2. Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a Gordian Knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 1996; 46:128–148 [View Article]
    [Google Scholar]
  3. Dong K, Chen F, Du Y, Wang G. Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus Flavobacterium and Flavobacterium cauense, Flavobacterium saliperosum and Flavobacterium suncheonense. Int J Syst Evol Microbiol 2013; 63:886–892 [View Article][PubMed]
    [Google Scholar]
  4. Kang JY, Chun J, Jahng KY. Flavobacterium aciduliphilum sp. nov., isolated from freshwater, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol 2013; 63:1633–1638 [View Article][PubMed]
    [Google Scholar]
  5. Yoon JH, Kang SJ, Oh TK. Flavobacterium soli sp. nov., isolated from soil. Int J Syst Evol Microbiol 2006; 56:997–1000 [View Article][PubMed]
    [Google Scholar]
  6. Chen WM, Huang WC, Young CC, Sheu SY. Flavobacterium tilapiae sp. nov., isolated from a freshwater pond, and emended descriptions of Flavobacterium defluvii and Flavobacterium johnsoniae. Int J Syst Evol Microbiol 2013; 63:827–834 [View Article][PubMed]
    [Google Scholar]
  7. Song L, Liu H, Huang Y, Dai X, Zhou Y. Flavobacterium marinum sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2013; 63:3551–3555 [View Article][PubMed]
    [Google Scholar]
  8. Ryu SH, Park M, Jeon Y, Lee JR, Park W et al. Flavobacterium filum sp. nov., isolated from a wastewater treatment plant in Korea. Int J Syst Evol Microbiol 2007; 57:2026–2030 [View Article][PubMed]
    [Google Scholar]
  9. Tamaki H, Hanada S, Kamagata Y, Nakamura K, Nomura N et al. Flavobacterium limicola sp. nov., a psychrophilic, organic-polymer-degrading bacterium isolated from freshwater sediments. Int J Syst Evol Microbiol 2003; 53:519–526 [View Article][PubMed]
    [Google Scholar]
  10. Bernardet JF, Bowman JP. The genus Flavobacterium. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors) The Prokaryotes New York: Springer; 2006 pp. 481–531
    [Google Scholar]
  11. Bernardet JF, Bowman JP, Genus I. Flavobacterium Bergeyet al. 1923. In Whitman W. (editor) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 4 Baltimore: Williams & Wilkins; 2011 pp. 112–154
    [Google Scholar]
  12. Liu H, Lu P, Jin L, Zhu G. Flavobacterium luticocti sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 2017; 67:369–373 [View Article][PubMed]
    [Google Scholar]
  13. Park SH, Kim JY, Kim YJ, Heo MS. Flavobacterium jejuensis sp. nov., isolated from marine brown alga Ecklonia cava. J Microbiol 2015; 53:756–761 [View Article]
    [Google Scholar]
  14. Joung Y, Kim H, Joh K. Flavobacterium jumunjinense sp. nov., isolated from a lagoon, and emended descriptions of Flavobacterium cheniae, Flavobacterium dongtanense and Flavobacterium gelidilacus. Int J Syst Evol Microbiol 2013; 63:3937–3943 [View Article][PubMed]
    [Google Scholar]
  15. Xiao YP, Hui W, Lee JS, Lee KC, Quan ZX. Flavobacterium dongtanense sp. nov., isolated from the rhizosphere of a wetland reed. Int J Syst Evol Microbiol 2011; 61:343–346 [View Article][PubMed]
    [Google Scholar]
  16. Liu Y, Zhai L, Yao S, Cao Y, Cao Y et al. Brachybacterium hainanense sp. nov., isolated from noni (Morinda citrifolia L.) branch. Int J Syst Evol Microbiol 2015; 65:4196–4201 [View Article][PubMed]
    [Google Scholar]
  17. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for general and molecular bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  18. Gregersen T. Rapid method for distinction of gram-negative from gram-positive bacteria. Appl Journal Biotechnol 1978; 5:123–127 [View Article]
    [Google Scholar]
  19. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  20. Yoon JH, Kang SJ, Oh TK. Donghicola eburneus gen. nov., sp. nov., isolated from seawater of the East Sea in Korea. Int J Syst Evol Microbiol 2007; 57:73–76 [View Article][PubMed]
    [Google Scholar]
  21. Tang X, Zhai L, Lin Y, Yao S, Wang L et al. Halomonas alkalicola sp. nov., isolated from a household product plant. Int J Syst Evol Microbiol 2017; 67:1546–1550 [View Article][PubMed]
    [Google Scholar]
  22. Park SK, Kim MS, Jung MJ, Nam YD, Park EJ et al. Brachybacterium squillarum sp. nov., isolated from salt-fermented seafood. Int J Syst Evol Microbiol 2011; 61:1118–1122 [View Article]
    [Google Scholar]
  23. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  24. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp. 115–175
    [Google Scholar]
  25. Thompson J. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  27. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  28. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  29. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983
    [Google Scholar]
  30. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  31. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  32. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  33. Romano I, Nicolaus B, Lama L, Trabasso D, Caracciolo G et al. Accumulation of osmoprotectants and lipid pattern modulation in response to growth conditions by Halomonas pantelleriense. Syst Appl Microbiol 2001; 24:342–352 [View Article][PubMed]
    [Google Scholar]
  34. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  35. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464
    [Google Scholar]
  36. Ngo HT, Kook M, Yi TH. Flavobacterium daemonensis sp. nov., isolated from Daemo Mountain soil. Int J Of Evol Microbiol 2015; 65:983–989 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003124
Loading
/content/journal/ijsem/10.1099/ijsem.0.003124
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed