1887

Abstract

A novel actinobacterium, designated strain SYSU K10002, was isolated from a soil sample collected from a karst cave in Xingyi county, Guizhou province, south-western China. The taxonomic position of the strain was investigated using a polyphasic approach. Cells of the strain were aerobic and Gram-stain-positive. On the basis of 16S rRNA gene sequence similarities and phylogenetic analysis, strain SYSU K10002 was most closely related to the type strains of Nocardiaaltamirensis NBRC 108246 (99.0 % sequence similarity) and Nocardiatenerifensis NBRC 101015 (98.8 %) and is therefore considered to represent a member of the genus Nocardia . DNA–DNA hybridization values between strain SYSU K10002 and the closely related type strains of the genus Nocardia were less than 70 %. In addition, meso-diaminopimelic acid was the diagnostic diamino acid in the cell-wall peptidoglycan. The whole-cell sugars were arabinose, ribose and galactose. The major isoprenoid quinone was MK-8(H4,ω-cycl), while the major fatty acids (>10 %) were C16 : 0, C18 : 1ω9c and C18 : 0 10-methyl. The polar lipids contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside and an unidentified glycolipid. Mycolic acids were present. The genomic DNA G+C content of strain SYSU K10002 was 67.4 mol%. On the basis of phenotypic, genotypic and phylogenetic data, strain SYSU K10002 represents a novel species of the genus Nocardia , for which the name Nocardia aurea sp. nov. is proposed. The type strain is SYSU K10002 (=KCTC 39849=DSM 103986).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003122
2018-11-29
2019-10-17
Loading full text...

Full text loading...

References

  1. Trevisan V. I Generi e le Specie delle Batteriacee Milan: Zanaboni & Gabuzzi; 1889
    [Google Scholar]
  2. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a New hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997;47:479–491 [CrossRef]
    [Google Scholar]
  3. Conville PS, Witebsky FG. Nocardia, Rhodococcus, Gordonia, Actinomadura, Streptomyces, and other aerobic actinomycetes. In Murray PR. (editor) Manual of Clinical Microbiology, 9th ed.vol. 1 Washington, DC: American Society of Microbiology Press; 2007; pp.515–542
    [Google Scholar]
  4. Goodfellow M, Lechevalier MP. Genus Nocardia. Trevisan 1889, 9AL. In Williams ST, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 2 Baltimore, MD: Williams & Wilkins; 1989; pp.1458–1471
    [Google Scholar]
  5. Gordon RE, Mihm JM. A comparative study of some strains received as nocardiae. J Bacteriol 1957;73:15–27[PubMed]
    [Google Scholar]
  6. Gordon RE, Mihm JM. The type species of the genus Nocardia. J Gen Microbiol 1962;27:1–10 [CrossRef][PubMed]
    [Google Scholar]
  7. Goodfellow M, Maldonado LA. Genus Nocardia. Trevisan 1889, 9AL. In Goodfellow M, Kämpfer P, Busse HP, Trujillo ME, Suzuki K et al. (editors) Bergey’s Manual of Systematic Bacteriology: The Actinobacteria, 2nd ed.vol. 5 New York: Springer; 2012; pp.376–395
    [Google Scholar]
  8. Goodfellow M. Family IV. Nocardiaceae (Castellani & Chalmers 1919) emend. Zhi, Li and Stackebrandt 2009. In Goodfellow M, Kämpfer P, Busse HP, Trujillo ME, Suzuki K et al. (editors) Bergey’s Manual of Systematic Bacteriology: The Actinobacteria, Part B, 2nd ed.vol. 5 New York: Springer; 2012; pp.376–496
    [Google Scholar]
  9. Brown-Elliott BA, Brown JM, Conville PS, Wallace RJ. Clinical and laboratory features of the Nocardia spp. based on current molecular taxonomy. Clin Microbiol Rev 2006;19:259–282 [CrossRef][PubMed]
    [Google Scholar]
  10. Ezeoke I, Klenk HP, Pötter G, Schumann P, Moser BD et al. Nocardia amikacinitolerans sp. nov., an amikacin-resistant human pathogen. Int J Syst Evol Microbiol 2013;63:1056–1061 [CrossRef][PubMed]
    [Google Scholar]
  11. Conville PS, Brown-Elliott BA, Smith T, Zelazny AM. The complexities of Nocardia taxonomy and identification. J Clin Microbiol 2018;56:e01419 [CrossRef][PubMed]
    [Google Scholar]
  12. Hayakawa M, Nonomura H. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 1987;65:501–509 [CrossRef]
    [Google Scholar]
  13. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  14. Waksman SA. The Actinomycetes. A Summary of Current Knowledge New York: Ronald Press; 1967
    [Google Scholar]
  15. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color-Name Charts Illustrated with Centroid Colors Washington: US Government Printing Office; 1964
    [Google Scholar]
  16. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  17. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974;24:54–63 [CrossRef]
    [Google Scholar]
  18. Williams ST, Goodfellow M, Alderson G. Genus Streptomyces Waksman and Henrici 1943, 339AL. In Williams ST, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 4 Baltimore: Williams & Willkins; 1989; pp.2453–2492
    [Google Scholar]
  19. Athalye M, Goodfellow M, Lacey J, White RP. Numerical classification of Actinomadura and Nocardiopsis. Int J Syst Bacteriol 1985;35:86–98 [CrossRef]
    [Google Scholar]
  20. Pridham TG, Gottlieb D. The utilization of carbon compounds by some Actinomycetales as an aid for species determination. J Bacteriol 1948;56:107–114[PubMed]
    [Google Scholar]
  21. Nie GX, Ming H, Li S, Zhou EM, Cheng J et al. Amycolatopsis dongchuanensis sp. nov., a novel actinobacterium isolated from dry-hot valley in Yunnan, south-west China. Int J Syst Evol Microbiol 2012;62:2650–2656
    [Google Scholar]
  22. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007;57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  23. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  24. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  25. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  26. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  28. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971;20:406–416 [CrossRef]
    [Google Scholar]
  29. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  30. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  31. Kimura M. The Neutral Theory of Molecular Evolution Cambridge University Press; 1985
    [Google Scholar]
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  33. Harrison P. SPADES - a process algebra for discrete event simulation. Journal of Logic and Computation 2000;10:3–42 [CrossRef]
    [Google Scholar]
  34. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010;11:119 [CrossRef][PubMed]
    [Google Scholar]
  35. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  36. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972;36:407–477[PubMed]
    [Google Scholar]
  37. Tang SK, Wang Y, Chen Y, Lou K, Cao LL et al. Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 2009;59:2025–2032 [CrossRef][PubMed]
    [Google Scholar]
  38. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  39. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  40. Kroppenstedt RM. Separation of Bacterial Menaquinones by HPLC Using Reverse Phase (RP18) and a Silver Loaded Ion Exchanger as Stationary Phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
    [Google Scholar]
  41. Tamaoka J. Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 1986;123:31–36[PubMed]
    [Google Scholar]
  42. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: Microbial ID, Inc; 1990
    [Google Scholar]
  43. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980;48:459–470 [CrossRef]
    [Google Scholar]
  44. Minnikin DE, Collins MD, Goodfellow M. Fatty Acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979;47:87–95 [CrossRef]
    [Google Scholar]
  45. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M. Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 1980;188:221–233 [CrossRef]
    [Google Scholar]
  46. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  47. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  48. Jurado V, Boiron P, Kroppenstedt RM, Laurent F, Couble A et al. Nocardia altamirensis sp. nov., isolated from Altamira cave, Cantabria, Spain. Int J Syst Evol Microbiol 2008;58:2210–2214 [CrossRef][PubMed]
    [Google Scholar]
  49. Kämpfer P, Buczolits S, Jäckel U, Grün-Wollny I, Busse HJ. Nocardia tenerifensis sp. nov. Int J Syst Evol Microbiol 2004;54:381–383 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003122
Loading
/content/journal/ijsem/10.1099/ijsem.0.003122
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error