1887

Abstract

During a screening of Listeria species in food samples in Thailand, a Listeria -like bacterium was recovered from fried chicken and could not be assigned to any known species. Phylogenetic analysis based on the 16S rRNA gene and on 243 Listeria core genes placed the novel taxon within the Listeria aquatica , Listeria floridensis , Listeria fleishmannii and Listeria costaricensis clade ( Listeria sensu lato), with highest similarity to L. floridensis (98.9 %) and L. costaricensis (98.8 %). Whole-genome sequence analyses based on the average nucleotide blast identity (ANI<86 %), the pairwise amino acid identity (AAI>64 %) and on the percentage of conserved proteins (POCP>77 %) with currently known Listeria species confirmed that the strain constituted a new taxon within the genus Listeria . At the phenotypical level, it differs from other Listeria species by the production of acid from d-tagatose and inositol. The name Listeria thailandensis sp. nov. is proposed for the novel species, and is represented by the type strain CLIP 2015/00305 (=CIP 111635=DSM 107638).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003097
2018-11-20
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/1/74.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003097&mimeType=html&fmt=ahah

References

  1. Chiara M, Caruso M, D'Erchia AM, Manzari C, Fraccalvieri R et al. Comparative genomics of Listeria sensu lato: genus-wide differences in evolutionary dynamics and the progressive gain of complex, potentially pathogenicity-related traits through lateral gene transfer. Genome Biol Evol 2015;7:2154–2172 [CrossRef][PubMed]
    [Google Scholar]
  2. Orsi RH, Wiedmann M. Characteristics and distribution of Listeria spp., including Listeria species newly described since 2009. Appl Microbiol Biotechnol 2016;100:5273–5287 [CrossRef][PubMed]
    [Google Scholar]
  3. McLauchlin J, Reese CED. Genus Listeria. In Vos P, Garrity G, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology New York: Springer; 2009
    [Google Scholar]
  4. Pirie JH. The genus Listerella pirie. Science 1940;91:383 [CrossRef][PubMed]
    [Google Scholar]
  5. Seeliger HP. Nonpathogenic listeriae: L. innocua sp. n. (Seeliger et Schoofs, 1977) (author's transl). Zentralbl Bakteriol Mikrobiol Hyg A 1981;249:487–493[PubMed]
    [Google Scholar]
  6. Rocourt J, Grimont PAD. Listeria welshimeri sp. nov. and Listeria seeligeri sp. nov. Int J Syst Bacteriol 1983;33:866–869 [CrossRef]
    [Google Scholar]
  7. Seeliger HPR, Rocourt J, Schrettenbrunner A, Grimont PAD, Jones D. Listeria ivanovii sp. nov. Int J Syst Bacteriol 1984;34:336–337 [CrossRef]
    [Google Scholar]
  8. Graves LM, Helsel LO, Steigerwalt AG, Morey RE, Daneshvar MI et al. Listeria marthii sp. nov., isolated from the natural environment, Finger Lakes National Forest. Int J Syst Evol Microbiol 2010;60:1280–1288 [CrossRef][PubMed]
    [Google Scholar]
  9. Rocourt J, Boerlin P, Grimont F, Jacquet C, Piffaretti JC. Assignment of Listeria grayi and Listeria murrayi to a single species, Listeria grayi, with a revised description of Listeria grayi. Int J Syst Bacteriol 1992;42:171–174 [CrossRef][PubMed]
    [Google Scholar]
  10. Larsen HE, Seeliger PR. A mannitol fermenting Listeria: Listeria grayi sp. n. In Proceedings of the Third International Symposium on Listeriosis Bilthoven: The Netherlands; 1966
    [Google Scholar]
  11. Leclercq A, Clermont D, Bizet C, Grimont PA, Le Flèche-Matéos A et al. Listeria rocourtiae sp. nov. Int J Syst Evol Microbiol 2010;60:2210–2214 [CrossRef][PubMed]
    [Google Scholar]
  12. den Bakker HC, Manuel CS, Fortes ED, Wiedmann M, Nightingale KK. Genome sequencing identifies Listeria fleischmannii subsp. coloradonensis subsp. nov., isolated from a ranch. Int J Syst Evol Microbiol 2013;63:3257–3268 [CrossRef][PubMed]
    [Google Scholar]
  13. Bertsch D, Rau J, Eugster MR, Haug MC, Lawson PA et al. Listeria fleischmannii sp. nov., isolated from cheese. Int J Syst Evol Microbiol 2013;63:526–532 [CrossRef][PubMed]
    [Google Scholar]
  14. Halter EL, Neuhaus K, Scherer S. Listeria weihenstephanensis sp. nov., isolated from the water plant Lemna trisulca taken from a freshwater pond. Int J Syst Evol Microbiol 2013;63:641–647
    [Google Scholar]
  15. den Bakker HC, Warchocki S, Wright EM, Allred AF, Ahlstrom C et al. Listeria floridensis sp. nov., Listeria aquatica sp. nov., Listeria cornellensis sp. nov., Listeria riparia sp. nov. and Listeria grandensis sp. nov., from agricultural and natural environments. Int J Syst Evol Microbiol 2014;64:1882–1889 [CrossRef][PubMed]
    [Google Scholar]
  16. Weller D, Andrus A, Wiedmann M, den Bakker HC. Listeria booriae sp. nov. and Listeria newyorkensis sp. nov., from food processing environments in the USA. Int J Syst Evol Microbiol 2015;65:286–292 [CrossRef][PubMed]
    [Google Scholar]
  17. Núñez-Montero K, Leclercq A, Moura A, Vales G, Peraza J et al. Listeria costaricensis sp. nov. Int J Syst Evol Microbiol 2018;68:844–850 [CrossRef][PubMed]
    [Google Scholar]
  18. Doijad SP, Poharkar KV, Kale SB, Kerkar S, Kalorey DR et al. Listeria goaensis sp. nov. Int J Syst Evol Microbiol 2018;68:3285–3291 [CrossRef][PubMed]
    [Google Scholar]
  19. Allerberger F, Wagner M. Listeriosis: a resurgent foodborne infection. Clin Microbiol Infect 2010;16:16–23 [CrossRef][PubMed]
    [Google Scholar]
  20. Thouvenot P, Vales G, Bracq-Dieye H, Tessaud-Rita N, Maury MM et al. MALDI-TOF mass spectrometry-based identification of Listeria species in surveillance: a prospective study. J Microbiol Methods 2018;144:29–32 [CrossRef][PubMed]
    [Google Scholar]
  21. Moura A, Tourdjman M, Leclercq A, Hamelin E, Laurent E et al. Real-time whole-genome sequencing for surveillance of Listeria monocytogenes, France. Emerg Infect Dis 2017;23:1462–1470 [CrossRef][PubMed]
    [Google Scholar]
  22. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015;31:3691–3693 [CrossRef][PubMed]
    [Google Scholar]
  23. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  24. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015;32:268–274 [CrossRef][PubMed]
    [Google Scholar]
  25. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  26. Rodriguez-R LM, Konstantinidis KT. The enveomics collection : a toolbox for specialized analyses of microbial genomes and metagenomes. Peer J Prepr 2016;4:e1900v1
    [Google Scholar]
  27. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014;196:2210–2215 [CrossRef][PubMed]
    [Google Scholar]
  28. Doumith M, Buchrieser C, Glaser P, Jacquet C, Martin P. Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J Clin Microbiol 2004;42:3819–3822 [CrossRef][PubMed]
    [Google Scholar]
  29. Moura A, Criscuolo A, Pouseele H, Maury MM, Leclercq A et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat Microbiol 2016;2:16185 [CrossRef][PubMed]
    [Google Scholar]
  30. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  31. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  32. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  33. Erko S, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;8:6–9
    [Google Scholar]
  34. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  35. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014;9:111–118 [CrossRef]
    [Google Scholar]
  36. Hussey MA, Zayaitz A. Endospore stain protocol. Am Soc Microbiol 2007;8:1–11
    [Google Scholar]
  37. Hitchins A, Jinneman K, Chen Y. Detection of Listeria monocytogenes in foods and environmental samples, and enumeration of Listeria monocytogenes in foods. In USA Food and Drug Administration (editor) Bacteriological Analytical Manual 2016
    [Google Scholar]
  38. Bille J, Catimel B, Bannerman E, Jacquet C, Yersin MN et al. API Listeria, a new and promising one-day system to identify Listeria isolates. Appl Environ Microbiol 1992;58:1857–1860[PubMed]
    [Google Scholar]
  39. Société Française de Microbiologie Recommandations 2018 Du Comité De l’antibiogramme De La Société Française De Microbiologie. V.1.0
    [Google Scholar]
  40. European Committee on Antimicrobial Susceptibility (EUCAST) Testing breakpoint tables for interpretation of MICs and zone diameters. Version 8.1.
  41. Vázquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Domínguez-Bernal G et al. Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 2001;14:584–640 [CrossRef][PubMed]
    [Google Scholar]
  42. Maury MM, Tsai YH, Charlier C, Touchon M, Chenal-Francisque V et al. Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nat Genet 2016;48:308–313 [CrossRef][PubMed]
    [Google Scholar]
  43. Troxler R, von Graevenitz A, Funke G, Wiedemann B, Stock I. Natural antibiotic susceptibility of Listeria species: L. grayi, L. innocua, L. ivanovii, L. monocytogenes, L. seeligeri and L. welshimeri strains. Clin Microbiol Infect 2000;6:525–535 [CrossRef][PubMed]
    [Google Scholar]
  44. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  45. Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 2001;18:691–699 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003097
Loading
/content/journal/ijsem/10.1099/ijsem.0.003097
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error