Mesosutterella multiformis gen. nov., sp. nov., a member of the family Sutterellaceae and Sutterella megalosphaeroides sp. nov., isolated from human faeces Free

Abstract

Two novel, obligately anaerobic, Gram-stain-negative, rod or coccoid-shaped bacteria, designated strains 4NBBH2 and 6FBBBH3, were isolated from faecal samples of a healthy Japanese woman and man. The 16S rRNA gene sequence analysis showed that these strains represent a distinct lineage within the family Sutterellaceae . Strain 4NBBH2 formed a monophyletic branch between the genera Parasutterella and Sutterella , with sequence similarity to Sutterella stercoricanis CCUG 47620 (92.6 %), followed by Sutterella wadsworthensis WAL 7877 (92.4 %), Sutterella parvirubra YIT 11816 (92.1 %) and Parasutterella secunda YIT 12071 (91.8 %). Strain 6FBBBH3 was affiliated to the genus Sutterella , with highest similarity to S. stercoricanis CCUG 47620 (97.1 %), followed by S. parvirubra YIT 11816 (96.6 %) and S. wadsworthensis WAL 7877 (95.2 %). Strains 4NBBH2 and 6FBBBH3 were asaccharolytic. Analysis of fatty acids revealed that strain 4NBBH2 could be differentiated from Sutterella species (including strain 6FBBBH3) by the presence of a low concentration of C16 : 1ω7c. The major respiratory quinones of strain 4NBBH2 were menaquinone (MK)-6 and methylmenaquinone (MMK)-6, whereas those of strain 6FBBBH3 were MK-5 and MMK-5. The G+C content of the genomic DNA of strains 4NBBH2 and 6FBBBH3 were 56.9 and 62.8 mol%, respectively. On the basis of the collected data, strain 4NBBH2 represents a novel species in a novel genus of the family Sutterellaceae , for which the name Mesosutterella multiformis gen. nov., sp. nov. is proposed. The type strain is 4NBBH2 (=JCM 32464=DSM 106860). We also propose a novel Sutterella species, Sutterella megalosphaeroides sp. nov., for strain 6FBBBH3 (=JCM 32470=DSM 106861).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003096
2018-11-05
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/12/3942.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003096&mimeType=html&fmt=ahah

References

  1. Sakamoto M, Iino T, Ohkuma M. Faecalimonas umbilicata gen. nov., sp. nov., isolated from human faeces, and reclassification of Eubacterium contortum, Eubacterium fissicatena and Clostridium oroticum as Faecalicatena contorta gen. nov., comb. nov., Faecalicatena fissicatena comb. nov. and Faecalicatena orotica comb. nov. Int J Syst Evol Microbiol 2017; 67:1219–1227 [View Article][PubMed]
    [Google Scholar]
  2. Sakamoto M, Iino T, Hamada M, Ohkuma M. Parolsenella catena gen. nov., sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2018; 68:1165–1172 [View Article][PubMed]
    [Google Scholar]
  3. Sakamoto M, Iino T, Yuki M, Ohkuma M. Lawsonibacter asaccharolyticus gen. nov., sp. nov., a butyrate-producing bacterium isolated from human faeces. Int J Syst Evol Microbiol 2018; 68:2074–2081 [View Article][PubMed]
    [Google Scholar]
  4. Wexler HM, Reeves D, Summanen PH, Molitoris E, McTeague M et al. Sutterella wadsworthensis gen. nov., sp. nov., bile-resistant microaerophilic Campylobacter gracilis-like clinical isolates. Int J Syst Bacteriol 1996; 46:252–258 [View Article][PubMed]
    [Google Scholar]
  5. Greetham HL, Collins MD, Gibson GR, Giffard C, Falsen E et al. Sutterella stercoricanis sp. nov., isolated from canine faeces. Int J Syst Evol Microbiol 2004; 54:1581–1584 [View Article][PubMed]
    [Google Scholar]
  6. Sakon H, Nagai F, Morotomi M, Tanaka R. Sutterella parvirubra sp. nov. and Megamonas funiformis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2008; 58:970–975 [View Article][PubMed]
    [Google Scholar]
  7. Wexler HM. Genus VIII. Sutterella. In Brenner DJ, Krieg NR, Staley JT. (editors) Bergey’s Manual of Systematic Bacteriology vol. 2 part C, The Proteobacteria New York: Springer-Verlag; 2005 pp. 682–683
    [Google Scholar]
  8. Williams BL, Hornig M, Parekh T, Lipkin WI. Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. MBio 2012; 3:e00261-11 [View Article][PubMed]
    [Google Scholar]
  9. Hiippala K, Kainulainen V, Kalliomäki M, Arkkila P, Satokari R. Mucosal prevalence and interactions with the epithelium indicate commensalism of Sutterella spp. Front Microbiol 2016; 7:706 [View Article][PubMed]
    [Google Scholar]
  10. Sakamoto M, Suzuki M, Umeda M, Ishikawa I, Benno Y. Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 2002; 52:841–849 [View Article][PubMed]
    [Google Scholar]
  11. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  12. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  13. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  16. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  17. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  18. Sakamoto M, Ohkuma M. Usefulness of the hsp60 gene for the identification and classification of Gram-negative anaerobic rods. J Med Microbiol 2010; 59:1293–1302 [View Article][PubMed]
    [Google Scholar]
  19. Sakamoto M, Suzuki N, Benno Y. hsp60 and 16S rRNA gene sequence relationships among species of the genus Bacteroides with the finding that Bacteroides suis and Bacteroides tectus are heterotypic synonyms of Bacteroides pyogenes. Int J Syst Evol Microbiol 2010; 60:2984–2990 [View Article][PubMed]
    [Google Scholar]
  20. Hill JE, Penny SL, Crowell KG, Goh SH, Hemmingsen SM. cpnDB: a chaperonin sequence database. Genome Res 2004; 14:1669–1675 [View Article][PubMed]
    [Google Scholar]
  21. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article][PubMed]
    [Google Scholar]
  22. Tanizawa Y, Fujisawa T, Kaminuma E, Nakamura Y, Arita M. DFAST and DAGA: web-based integrated genome annotation tools and resources. Biosci Microbiota Food Health 2016; 35:173–184 [View Article][PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  24. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  25. Nagai F, Morotomi M, Sakon H, Tanaka R. Parasutterella excrementihominis gen. nov., sp. nov., a member of the family Alcaligenaceae isolated from human faeces. Int J Syst Evol Microbiol 2009; 59:1793–1797 [View Article][PubMed]
    [Google Scholar]
  26. Morotomi M, Nagai F, Watanabe Y. Parasutterella secunda sp. nov., isolated from human faeces and proposal of Sutterellaceae fam. nov. in the order Burkholderiales. Int J Syst Evol Microbiol 2011; 61:637–643 [View Article][PubMed]
    [Google Scholar]
  27. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA et al. Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation. Nature 2016; 533:543–546 [View Article][PubMed]
    [Google Scholar]
  28. McClung LS, Lindberg RB. The study of obligately anaerobic bacteria. In Pelczar MJ. (editor) Manual of Microbiological Methods New York: McGraw-Hill; 1957 pp. 120–139
    [Google Scholar]
  29. Shah HN. The genus Bacteroides and related taxa. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH et al. (editors) The Prokaryotes, 2nd ed. New York: Springer; 1992 pp. 3593–3607
    [Google Scholar]
  30. Holdeman LV, Cato EP, Moore WEC. Anaerobe Laboratory Manual, 4th ed. Blacksburg, VA: Virginia Polytechnic Institute and State University; 1977
    [Google Scholar]
  31. Pramono AK, Sakamoto M, Iino T, Hongoh Y, Ohkuma M. Dysgonomonas termitidis sp. nov., isolated from the gut of the subterranean termite Reticulitermes speratus. Int J Syst Evol Microbiol 2015; 65:681–685 [View Article][PubMed]
    [Google Scholar]
  32. Fenn K, Strandwitz P, Stewart EJ, Dimise E, Rubin S et al. Quinones are growth factors for the human gut microbiota. Microbiome 2017; 5:161 [View Article][PubMed]
    [Google Scholar]
  33. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  34. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586[PubMed]
    [Google Scholar]
  35. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article][PubMed]
    [Google Scholar]
  36. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36[PubMed]
    [Google Scholar]
  37. Hein S, Klimmek O, Polly M, Kern M, Simon J. A class C radical S-adenosylmethionine methyltransferase synthesizes 8-methylmenaquinone. Mol Microbiol 2017; 104:449–462 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003096
Loading
/content/journal/ijsem/10.1099/ijsem.0.003096
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed