1887

Abstract

A Gram-staining-positive, aerobic, irregular coccoid- to ovoid-shaped, non-spore-forming and motile bacterium, designated strain 13S1-3, was isolated from a soil sample from the rhizosphere of Tamarix collected in the Taklamakan desert in Xinjiang Uygur Autonomous Region, PR China. The strain was examined by a polyphasic approach to clarify its taxonomic position. Strain 13S1-3 grew optimally at 28–30 °C, pH 7.0 and with 0–1 % (w/v) NaCl. The cell-wall peptidoglycan was of the B2γ type and contained d-alanine, d-glutamic acid, glycine, d-2,4-diaminobutyric acid and l-2,4-diaminobutyric acid. Ribose, xylose, glucose and galactose were detected as cell-wall sugars. The acyl type of the muramic acid was acetyl. The predominant menaquinones were MK-12, MK-11, MK-13 and MK-10. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, two unidentified glycolipids and one unidentified phospholipid. The major whole-cell fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The DNA G+C content was 70.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that 13S1-3 represented a member of the family Microbacteriaceae and showed the highest level of 16S rRNA gene sequence similarity with Frondihabitans australicus E1HC-02 (97.11 %). Phylogenetic trees revealed that 13S1-3 formed a distinct lineage with respect to closely related genera within the family Microbacteriaceae . On the basis of the results of phylogenetic, phenotypic and chemotaxonomic analyses, 13S1-3 is distinguishable from phylogenetically related genera in the family Microbacteriaceae , and represents a novel species of a new genus, for which the name Planctomonas deserti gen. nov., sp. nov. is proposed. The type strain is 13S1-3 (=KCTC 49115=CGMCC 1.16554).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003095
2018-11-29
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/3/616.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003095&mimeType=html&fmt=ahah

References

  1. Park YH, Suzuki K, Yim DG, Lee KC, Kim E et al. Suprageneric classification of peptidoglycan group B actinomycetes by nucleotide sequencing of 5S ribosomal RNA. Antonie van Leeuwenhoek 1993;64:307–313 [CrossRef][PubMed]
    [Google Scholar]
  2. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997;47:479–491 [CrossRef]
    [Google Scholar]
  3. Zhi XY, Li WJ, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009;59:589–608 [CrossRef][PubMed]
    [Google Scholar]
  4. Evtushenko LI, Takeuchi M. The Family Microbacteriaceae. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors) The Prokaryotes, 3rd ed.vol. 3 New York: Springer; 2006; pp.1020–1098
    [Google Scholar]
  5. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972;36:407–477[PubMed]
    [Google Scholar]
  6. Evtushenko LI. Family XI. Microbacteriaceae. In Goodfellow M, Kampfer P, Busse HJ, Trujillo ME, Suzuki K et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 5 New York: Springer; 2012; pp.807–813
    [Google Scholar]
  7. Hayakawa M, Nonomura H. Humic acid–vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 1987;65:501–509 [CrossRef]
    [Google Scholar]
  8. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  9. Magee CM, Rodeheaver G, Edgerton MT, Edlich RF. A more reliable Gram staining technic for diagnosis of surgical infections. Am J Surg 1975;130:341–346 [CrossRef][PubMed]
    [Google Scholar]
  10. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color Name Charts illustrated With Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  11. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  12. Cappuccino JG, Sherman N. Microbiology: a Laboratory Manual, 6th ed. San Francisco: Benjamin Cummings Pearson Education; 2002
    [Google Scholar]
  13. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978;24:710–715 [CrossRef][PubMed]
    [Google Scholar]
  14. Kim SJ, Cho H, Joa JH, Hamada M, Ahn JH et al. Nakamurella intestinalis sp. nov., isolated from the faeces of Pseudorhynchus japonicus. Int J Syst Evol Microbiol 2017;67:2970–2974 [CrossRef][PubMed]
    [Google Scholar]
  15. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  16. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
    [Google Scholar]
  17. Uchida K, Kudo T, Suzuki KI, Nakase T. A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 1999;45:49–56 [CrossRef][PubMed]
    [Google Scholar]
  18. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  19. Guo L, Tuo L, Habden X, Zhang Y, Liu J et al. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 2015;65:206–213 [CrossRef][PubMed]
    [Google Scholar]
  20. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI inc; 1990
    [Google Scholar]
  21. Fujii K, Ikai Y, Oka H, Suzuki M, Harada K-Ichi. A nonempirical method using LC/MS for determination of the absolute configuration of constituent amino acids in a peptide: combination of Marfey's method with mass spectrometry and its practical application. Anal Chem 1997;69:5146–5151 [CrossRef]
    [Google Scholar]
  22. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007;57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  23. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  25. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  27. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  28. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  30. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–218 [CrossRef]
    [Google Scholar]
  31. Chen Y, Chen Y, Shi C, Huang Z, Zhang Y et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 2018;7:1–6 [CrossRef][PubMed]
    [Google Scholar]
  32. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  33. Mikheenko A, Valin G, Prjibelski A, Saveliev V, Gurevich A. Icarus: visualizer for de novo assembly evaluation. Bioinformatics 2016;32:3321–3323 [CrossRef][PubMed]
    [Google Scholar]
  34. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010;11:119 [CrossRef][PubMed]
    [Google Scholar]
  35. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  36. Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003;13:2178–2189 [CrossRef][PubMed]
    [Google Scholar]
  37. Zhang Z, Xiao J, Wu J, Zhang H, Liu G et al. ParaAT: a parallel tool for constructing multiple protein-coding DNA alignments. Biochem Biophys Res Commun 2012;419:779–781 [CrossRef][PubMed]
    [Google Scholar]
  38. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  39. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  40. Aizawa T, ve NB, Kimoto K, Iwabuchi N, Sumida H et al. Curtobacterium ammoniigenes sp. nov., an ammonia-producing bacterium isolated from plants inhabiting acidic swamps in actual acid sulfate soil areas of Vietnam. Int J Syst Evol Microbiol 2007;57:1447–1452 [CrossRef][PubMed]
    [Google Scholar]
  41. Zgurskaya HI, Evtushenko LI, Akimov VN, Kalakoutskii LV. Rathayibacter gen. nov., including the species Rathayibacter rathayi comb. nov., Rathayibacter tritici comb. nov., Rathayibacter iranicus comb. nov., and six strains from annual grasses. Int J Syst Bacteriol 1993;43:143–149 [CrossRef]
    [Google Scholar]
  42. Sasaki J, Chijimatsu M, Suzuki K. Taxonomic significance of 2,4-diaminobutyric acid isomers in the cell wall peptidoglycan of actinomycetes and reclassification of Clavibacter toxicus as Rathayibacter toxicus comb. nov. Int J Syst Bacteriol 1998;48:403–410 [CrossRef][PubMed]
    [Google Scholar]
  43. Dorofeeva LV, Evtushenko LI, Krausova VI, Karpov AV, Subbotin SA et al. Rathayibacter caricis sp. nov. and Rathayibacter festucae sp. nov., isolated from the phyllosphere of Carex sp. and the leaf gall induced by the nematode Anguina graminis on Festuca rubra L., respectively. Int J Syst Evol Microbiol 2002;52:1917–1923 [CrossRef][PubMed]
    [Google Scholar]
  44. Zhang L, Xu Z, Patel BK. Frondicola australicus gen. nov., sp. nov., isolated from decaying leaf litter from a pine forest. Int J Syst Evol Microbiol 2007;57:1177–1182 [CrossRef][PubMed]
    [Google Scholar]
  45. Greene AC, Euzéby JP, Tindall BJ, Patel BK. Proposal of Frondihabitans gen. nov. to replace the illegitimate genus name Frondicola Zhang et al. 2007. Int J Syst Evol Microbiol 2009;59:447–448 [CrossRef][PubMed]
    [Google Scholar]
  46. Lee SD. Frondihabitans peucedani sp. nov., an actinobacterium isolated from rhizosphere soil, and emended description of the genus Frondihabitans Greene et al. 2009. Int J Syst Evol Microbiol 2010;60:1740–1744 [CrossRef][PubMed]
    [Google Scholar]
  47. Cardinale M, Grube M, Berg G. Frondihabitans cladoniiphilus sp. nov., an actinobacterium of the family Microbacteriaceae isolated from lichen, and emended description of the genus Frondihabitans. Int J Syst Evol Microbiol 2011;61:3033–3038 [CrossRef][PubMed]
    [Google Scholar]
  48. Kim SJ, Lim JM, Ahn JH, Weon HY, Hamada M et al. Description of Galbitalea soli gen. nov., sp. nov., and Frondihabitans sucicola sp. nov. Int J Syst Evol Microbiol 2014;64:572–578 [CrossRef][PubMed]
    [Google Scholar]
  49. González AJ, Trapiello E. Clavibacter michiganensis subsp. phaseoli subsp. nov., pathogenic in bean. Int J Syst Evol Microbiol 2014;64:1752–1755 [CrossRef][PubMed]
    [Google Scholar]
  50. Yasuhara-Bell J, Alvarez AM. Seed-associated subspecies of the genus Clavibacter are clearly distinguishable from Clavibacter michiganensis subsp. michiganensis. Int J Syst Evol Microbiol 2015;65:811–826 [CrossRef][PubMed]
    [Google Scholar]
  51. Oh EJ, Bae C, Lee HB, Hwang IS, Lee HI et al. Clavibacter michiganensis subsp. capsici subsp. nov., causing bacterial canker disease in pepper. Int J Syst Evol Microbiol 2016;66:4065–4070 [CrossRef][PubMed]
    [Google Scholar]
  52. Männistö MK, Schumann P, Rainey FA, Kämpfer P, Tsitko I et al. Subtercola boreus gen. nov., sp. nov. and Subtercola frigoramans sp. nov., two new psychrophilic actinobacteria isolated from boreal groundwater. Int J Syst Evol Microbiol 2000;50:1731–1739 [CrossRef][PubMed]
    [Google Scholar]
  53. Si HL, Shi FX, Zhang LL, Yue HS, Wang HY et al. Subtercola lobariae sp. nov., an actinobacterium of the family Microbacteriaceae isolated from the lichen Lobaria retigera. Int J Syst Evol Microbiol 2017;67:1516–1521 [CrossRef][PubMed]
    [Google Scholar]
  54. Kämpfer P, Rainey FA, Andersson MA, Nurmiaho Lassila EL, Ulrych U et al. Frigoribacterium faeni gen. nov., sp. nov., a novel psychrophilic genus of the family Microbacteriaceae. Int J Syst Evol Microbiol 2000;50:355–363 [CrossRef][PubMed]
    [Google Scholar]
  55. Wang HF, Zhang YG, Chen JY, Guo JW, Li L et al. Frigoribacterium endophyticum sp. nov., an endophytic actinobacterium isolated from the root of Anabasis elatior (C. A. Mey.) Schischk. Int J Syst Evol Microbiol 2015;65:1207–1212 [CrossRef][PubMed]
    [Google Scholar]
  56. Kong D, Guo X, Zhou S, Wang H, Wang Y et al. Frigoribacterium salinisoli sp. nov., isolated from saline soil, transfer of Frigoribacterium mesophilum to Parafrigoribacterium gen. nov. as Parafrigoribacterium mesophilum comb. nov. Int J Syst Evol Microbiol 2016;66:5252–5259 [CrossRef][PubMed]
    [Google Scholar]
  57. Li HR, Yu Y, Luo W, Zeng YX. Marisediminicola antarctica gen. nov., sp. nov., an actinobacterium isolated from the Antarctic. Int J Syst Evol Microbiol 2010;60:2535–2539 [CrossRef][PubMed]
    [Google Scholar]
  58. Tuo L, Guo L, Liu SW, Liu JM, Zhang YQ et al. Lysinibacter cavernae gen. nov., sp. nov., a new member of the family Microbacteriaceae isolated from a karst cave. Int J Syst Evol Microbiol 2015;65:3305–3312 [CrossRef][PubMed]
    [Google Scholar]
  59. Kim SJ, Ahn JH, Weon HY, Hamada M, Suzuki K et al. Diaminobutyricibacter tongyongensis gen. nov., sp. nov. and Homoserinibacter gongjuensis gen. nov., sp. nov. belong to the family Microbacteriaceae. J Microbiol 2014;52:527–533 [CrossRef][PubMed]
    [Google Scholar]
  60. Cook DM, Henriksen ED, Rogers TE, Peterson JD. Klugiella xanthotipulae gen. nov., sp. nov., a novel member of the family Microbacteriaceae. Int J Syst Evol Microbiol 2008;58:2779–2782 [CrossRef][PubMed]
    [Google Scholar]
  61. Evtushenko LI, Dorofeeva LV, Dobrovolskaya TG, Streshinskaya GM, Subbotin SA et al. Agreia bicolorata gen. nov., sp. nov., to accommodate actinobacteria isolated from narrow reed grass infected by the nematode Heteroanguina graminophila. Int J Syst Evol Microbiol 2001;51:2073–2079 [CrossRef][PubMed]
    [Google Scholar]
  62. Schumann P, Behrendt U, Ulrich A, Suzuki K. Reclassification of Subtercola pratensis Behrendt et al. 2002 as Agreia pratensis comb. nov. Int J Syst Evol Microbiol 2003;53:2041–2044 [CrossRef][PubMed]
    [Google Scholar]
  63. Kim SJ, Tamura T, Hamada M, Ahn JH, Weon HY et al. Compostimonas suwonensis gen. nov., sp. nov., isolated from spent mushroom compost. Int J Syst Evol Microbiol 2012;62:2410–2416 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003095
Loading
/content/journal/ijsem/10.1099/ijsem.0.003095
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error