1887

Abstract

Two Nostoc-like strains have been isolated, purified, cultured and identified on the basis of the polyphasic approach using morphological, ecological, molecular and phylogenetic methods. Both strains were found to have morphology similar to the genus Nostoc , but clustered strongly in a group distant from the Nostoc sensu stricto clade. Further analysis, using the folded structures of the 16S–23S ITS region revealed strong differences from closely related members of the genus Nostoc . Distinct phylogenetic clustering and strong tree topologies using Bayesian inference, maximum-likelihood and maximum-parsimony methods indicated the need to revisit the taxonomy of the members of this particular clade with a clear need for giving a generic status distinct from the genus Nostoc . In accordance with the International Code of Nomenclature for Algae, Fungi and Plants, the name Desikacharya gen. nov. is proposed for the new genus along with the description of two new species, Desikacharya nostocoides sp. nov. and Desikacharya soli sp. nov., and reclassification of Nostoc thermotolerans to Desikacharya thermotolerans comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003093
2018-12-06
2019-08-18
Loading full text...

Full text loading...

References

  1. Řeháková K, Johansen JR, Casamatta DA, Xuesong L, Vincent J. Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mojavia pulchra gen. et sp. nov. Phycologia 2007;46:481–502 [CrossRef]
    [Google Scholar]
  2. Hrouzek P, Lukesova A, Mares J, Ventura S. Description of the cyanobacterial genus Desmonostoc gen. nov. including D. muscorum comb. nov. as a distinct, phylogenetically coherent taxon related to the genus Nostoc. Fottea 2013;13:201–213 [CrossRef]
    [Google Scholar]
  3. Genuário DB, Vaz MG, Hentschke GS, Sant'anna CL, Fiore MF. Halotia gen. nov., a phylogenetically and physiologically coherent cyanobacterial genus isolated from marine coastal environments. Int J Syst Evol Microbiol 2015;65:663–675 [CrossRef][PubMed]
    [Google Scholar]
  4. Bagchi SN, Dubey N, Singh P. Phylogenetically distant clade of Nostoc-like taxa with the description of Aliinostoc gen. nov. and Aliinostoc morphoplasticum sp. nov. Int J Syst Evol Microbiol 2017;67:3329–3338 [CrossRef][PubMed]
    [Google Scholar]
  5. Scotta Hentschke G, Johansen JR, Pietrasiak N, Rigonato J, Fiore MF et al. Komarekiella atlantica gen. et sp. nov. (Nostocaceae, Cyanobacteria): a new subaerial taxon from the Atlantic Rainforest and Kauai, Hawaii. Fottea 2017;17:178–190 [CrossRef]
    [Google Scholar]
  6. Bornet É, Flahault C. Revision des Nostocacées hétérocystées contenues dans les principaux herbiers de France (quatrième et dernier fragment). Annales Des Sciences Naturelles, Botanique, Septième Série 1888;7:177–262
    [Google Scholar]
  7. Komárek J. Cyanoprokaryota 3. Heterocytous genera. In Büdel B Gärtner G, Krienitz L, Schagerl M. (editors) Süβwasserflora von Mitteleuropa/Freshwater flora of Central Europe Heidelberg: Springer; 2013
    [Google Scholar]
  8. Rajaniemi P, Hrouzek P, Kastovská K, Willame R, Rantala A et al. Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Int J Syst Evol Microbiol 2005;55:11–26 [CrossRef][PubMed]
    [Google Scholar]
  9. Hrouzek P, Ventura S, Lukešová A, Mugnai MA, Turicchia S et al. Diversity of soil Nostoc strains: phylogenetic and phenotypic variability. Arch Hydrobiol Suppl Algol Stud 2005;117:251–264
    [Google Scholar]
  10. Papaefthimiou D, Hrouzek P, Mugnai MA, Lukesova A, Turicchia S et al. Differential patterns of evolution and distribution of the symbiotic behaviour in nostocacean cyanobacteria. Int J Syst Evol Microbiol 2008;58:553–564 [CrossRef][PubMed]
    [Google Scholar]
  11. Fernández-Martínez MA, de Los Ríos A, Sancho LG, Pérez-Ortega S. Diversity of endosymbiotic Nostoc in Gunnera magellanica from Tierra del Fuego, Chile [corrected]. Microb Ecol 2013;66:335–350 [CrossRef][PubMed]
    [Google Scholar]
  12. Singh P, Singh SS, Elster J, Mishra AK. Molecular phylogeny, population genetics, and evolution of heterocystous cyanobacteria using nifH gene sequences. Protoplasma 2013;250:751–764 [CrossRef][PubMed]
    [Google Scholar]
  13. Singh P, Singh SS, Aboal M, Mishra AK. Decoding cyanobacterial phylogeny and molecular evolution using an evonumeric approach. Protoplasma 2015;252:519–535 [CrossRef][PubMed]
    [Google Scholar]
  14. Singh P, Fatma A, Mishra AK. Molecular phylogeny and evogenomics of heterocystous cyanobacteria using rbcl gene sequence data. Ann Microbiol 2015;65:799–807 [CrossRef]
    [Google Scholar]
  15. Komárek J, Kaštovský J, Mareš J, Johansen JR. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) using a polyphasic approach. Preslia 2014;86:295–335
    [Google Scholar]
  16. Bohunická M, Pietrasiak N, Johansen JR, Berrendero Gómez E, Hauer T et al. Roholtiella, gen. nov. (Nostocales, Cyanobacteria) - a tapering and branching member of the Nostocaceae (Cyanobacteria). Phytotaxa 2015;197:84–103
    [Google Scholar]
  17. Berrendero Gómez E, Johansen JR, Kaštovský J, Bohunická M, Čapková K. Macrochaete gen. nov. (Nostocales, Cyanobacteria), a taxon morphologically and molecularly distinct from Calothrix. J Phycol 2016;52:638–655 [CrossRef][PubMed]
    [Google Scholar]
  18. Shalygin S, Shalygina R, Johansen JR, Pietrasiak N, Berrendero Gómez E et al. Cyanomargarita gen. nov. (Nostocales, Cyanobacteria): convergent evolution resulting in a cryptic genus. J Phycol 2017;53:762–777 [CrossRef][PubMed]
    [Google Scholar]
  19. Hauer T, Bohunická M, Johansen JR, Mareš J, Berrendero-Gomez E. Reassessment of the cyanobacterial family Microchaetaceae and establishment of new families Tolypothrichaceae and Godleyaceae. J Phycol 2014;50:1089–1100 [CrossRef][PubMed]
    [Google Scholar]
  20. Suradkar A, Villanueva C, Gaysina LA, Casamatta DA, Saraf A et al. Nostoc thermotolerans sp. nov., a soil dwelling species of Nostoc (Cyanobacteria) isolated from Madhya Pradesh, India. Int J Syst Evol Microbiol 2017;67:1296–1305
    [Google Scholar]
  21. Rippka R, Stanier RY, Deruelles J, Herdman M, Waterbury JB. Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Microbiology 1979;111:1–61 [CrossRef]
    [Google Scholar]
  22. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 1989;17:7843–7853 [CrossRef][PubMed]
    [Google Scholar]
  23. Gkelis S, Rajaniemi P, Vardaka E, Moustaka-Gouni M, Lanaras T et al. Limnothrix redekei (Van Goor) Meffert (Cyanobacteria) strains from Lake Kastoria, Greece form a separate phylogenetic group. Microb Ecol 2005;49:176–182 [CrossRef][PubMed]
    [Google Scholar]
  24. Głowacka J, Szefel-Markowska M, Waleron M, Łojkowska E, Waleron K. Detection and identification of potentially toxic cyanobacteria in Polish water bodies. Acta Biochim Pol 2011;58:321–333[PubMed]
    [Google Scholar]
  25. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  26. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  27. Xia X. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 2013;30:1720–1728 [CrossRef][PubMed]
    [Google Scholar]
  28. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012;61:539–542 [CrossRef][PubMed]
    [Google Scholar]
  29. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  30. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  31. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  32. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  33. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003;31:3406–3415 [CrossRef][PubMed]
    [Google Scholar]
  34. Kaštovský J, Gomez EB, Hladil J, Johansen JR. Cyanocohniella calida gen. et sp. nov. (Cyanobacteria: Aphanizomenonaceae) a new cyanobacterium from the thermal springs from Karlovy Vary, Czech Republic. Phytotaxa 2014;181:279–292 [CrossRef]
    [Google Scholar]
  35. Dvořák P, Poulíčková A, Hašler P, Belli M, Casamatta DA et al. Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification. Biodivers Conserv 2015;24:739–757 [CrossRef]
    [Google Scholar]
  36. Gonzalez-Resendiz L, Johansen JR, Alba-Lois L, Segal-Kischinevzky C, Escobar-Sanchez V et al. Nunduva, a new marine genus of Rivulariaceae (Nostocales, Cyanobacteria) from marine rocky shores. Fottea 2018;18:86–105 [CrossRef]
    [Google Scholar]
  37. Desikachary TV. Cyanophyta ICAR Monographs on Algae New Delhi: Indian Council of Agricultural Research; 1959
    [Google Scholar]
  38. Elenkin AA. Monographie algarum cyanophyceraum aquidulcium et terrestrium infinitibus URRS inventarum. Pars Specialis (Systematica) Fasc I. Acad. NaukVol. 1 Moscow & Leningrad: URRS 1938
    [Google Scholar]
  39. Sant’anna CL. Two new taxa and Anabaena and other Nostocaceae (Cyanophyceae) from the state of Sao Paulo, southern Brazil. Archiv Für Hydrobiologie Supplementaband Algol Stud 1991;64:527–545
    [Google Scholar]
  40. Fiore MF, Neilan BA, Copp JN, Rodrigues JL, Tsai SM et al. Characterization of nitrogen-fixing cyanobacteria in the Brazilian Amazon floodplain. Water Res 2005;39:5017–5026 [CrossRef][PubMed]
    [Google Scholar]
  41. Pereira AL, Vasconcelos V. Classification and phylogeny of the cyanobiont Anabaena azollae Strasburger: an answered question?. Int J Syst Evol Microbiol 2014;64:1830–1840 [CrossRef][PubMed]
    [Google Scholar]
  42. Kabirnataj S, Nematzadeh GA, Talebi AF, Tabatabaei M, Singh P. Neowestiellopsis gen. nov, a new genus of true branched cyanobacteria with the description of Neowestiellopsis persica sp. nov. and Neowestiellopsis bilateralis sp. nov., isolated from Iran. Plant Syst Evol 2018;304:501–510 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003093
Loading
/content/journal/ijsem/10.1099/ijsem.0.003093
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error