1887

Abstract

A bacterial strain, designated as ISE14, with Gram-stain-negative and non-motile rod-shaped cells, was isolated from the root of a cucumber plant collected in a field in Iksan, Republic of Korea and was characterized using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISE14 represented a member of the genus Chryseobacterium and was closely related to Chryseobacterium viscerum 687B-08 (16S rRNA gene sequence similarity of 98.50 %), Chryseobacterium lactis NCTC 11390 (98.49 %), Chryseobacterium ureilyticum F-Fue-04IIIaaaa (98.49 %) and Chryseobacterium oncorhynchi 701B-08 (98.04 %). Average nucleotide identity values between genome sequences of strain ISE14 and the closely related species ranged from 81.44 to 83.15 %, which were lower than the threshold of 95 % (corresponding to a DNA–DNA hybridization value of 70 %). The DNA G+C content of strain ISE14 was 36.3 mol%. The dominant fatty acids were iso-C15 : 0, summed feature 9 (iso-C17 : 1 ω9c and/or C16 : 0 10-methyl), summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c) and iso-C17 : 0 3-OH. The major polar lipids were phosphatidylethanolamine, three unidentified aminolipids and eight unidentified lipids; the predominant respiratory quinone was MK-6. On the basis of the evidence presented in this study, strain ISE14 can be distinguished from closely related species belonging to the genus Chryseobacterium . Thus, strain ISE14 is a novel species of the genus Chryseobacterium , for which the name Chryseobacterium phosphatilyticum sp. nov. is proposed. The type strain is ISE14 (=KACC 19820=JCM 32876).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003091
2018-11-29
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/3/610.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003091&mimeType=html&fmt=ahah

References

  1. Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B. New perspectives in the classification of the Flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 1994; 44:827–831 [View Article]
    [Google Scholar]
  2. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article][PubMed]
    [Google Scholar]
  3. Kim KK, Lee KC, Oh HM, Lee JS. Chryseobacterium aquaticum sp. nov., isolated from a water reservoir. Int J Syst Evol Microbiol 2008; 58:533–537 [View Article][PubMed]
    [Google Scholar]
  4. Hantsis-Zacharov E, Shakéd T, Senderovich Y, Halpern M. Chryseobacterium oranimense sp. nov., a psychrotolerant, proteolytic and lipolytic bacterium isolated from raw cow's milk. Int J Syst Evol Microbiol 2008; 58:2635–2639 [View Article][PubMed]
    [Google Scholar]
  5. Benmalek Y, Cayol JL, Bouanane NA, Hacene H, Fauque G et al. Chryseobacterium solincola sp. nov., isolated from soil. Int J Syst Evol Microbiol 2010; 60:1876–1880 [View Article][PubMed]
    [Google Scholar]
  6. Zamora L, Vela AI, Palacios MA, Sánchez-Porro C, Svensson-Stadler LA et al. Chryseobacterium viscerum sp. nov., isolated from diseased fish. Int J Syst Evol Microbiol 2012; 62:2934–2940 [View Article][PubMed]
    [Google Scholar]
  7. Kämpfer P, Poppel MT, Wilharm G, Busse HJ, Mcinroy JA et al. Chryseobacterium gallinarum sp. nov., isolated from a chicken, and Chryseobacterium contaminans sp. nov., isolated as a contaminant from a rhizosphere sample. Int J Syst Evol Microbiol 2014; 64:1419–1427 [View Article][PubMed]
    [Google Scholar]
  8. Pal M, Kumari M, Kiran S, Salwan R, Mayilraj S et al. Chryseobacterium glaciei sp. nov., isolated from the surface of a glacier in the Indian trans-Himalayas. Int J Syst Evol Microbiol 2018; 68:865–870 [View Article][PubMed]
    [Google Scholar]
  9. Sang MK, Chun S-C, Kim KD. Biological control of Phytophthora blight of pepper by antagonistic rhizobacteria selected from a sequential screening procedure. Biological Control 2008; 46:424–433 [View Article]
    [Google Scholar]
  10. Kim H-S, Sang MK, Jung HW, Jeun Y-C, Myung I-S et al. Identification and characterization of Chryseobacterium wanjuense strain KJ9C8 as a biocontrol agent of Phytophthora blight of pepper. Crop Prot 2012; 32:129–137 [View Article]
    [Google Scholar]
  11. Sang MK, Kim HS, Myung IS, Ryu CM, Kim BS et al. Chryseobacterium kwangjuense sp. nov., isolated from pepper (Capsicum annuum L.) root. Int J Syst Evol Microbiol 2013; 63:2835–2840 [View Article][PubMed]
    [Google Scholar]
  12. Montero-Calasanz MC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2013; 63:4386–4395 [View Article][PubMed]
    [Google Scholar]
  13. Montero-Calasanz MC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium oleae sp. nov., an efficient plant growth promoting bacterium in the rooting induction of olive tree (Olea europaea L.) cuttings and emended descriptions of the genus Chryseobacterium, C. daecheongense, C. gambrini, C. gleum, C. joostei, C. jejuense, C. luteum, C. shigense, C. taiwanense, C. ureilyticum and C. vrystaatense. Syst Appl Microbiol 2014; 37:342–350 [View Article][PubMed]
    [Google Scholar]
  14. Kämpfer P, McInroy JA, Glaeser SP. Chryseobacterium rhizoplanae sp. nov., isolated from the rhizoplane environment. Antonie van Leeuwenhoek 2015; 107:533–538 [View Article][PubMed]
    [Google Scholar]
  15. Lin SY, Hameed A, Liu YC, Hsu YH, Hsieh YT et al. Chryseobacterium endophyticum sp. nov., isolated from a maize leaf. Int J Syst Evol Microbiol 2017; 67:570–575 [View Article][PubMed]
    [Google Scholar]
  16. Jeong JJ, Lee DW, Park B, Sang MK, Choi IG et al. Chryseobacterium cucumeris sp. nov., an endophyte isolated from cucumber (Cucumis sativus L.) root, and emended description of Chryseobacterium arthrosphaerae. Int J Syst Evol Microbiol 2017; 67:610–616 [View Article][PubMed]
    [Google Scholar]
  17. Sang MK, Jeong J-J, Kim J, Kim KD. Growth promotion and root colonisation in pepper plants by phosphate-solubilising Chryseobacterium sp. strain ISE14 that suppresses Phytophthora blight. Ann Appl Biol 2018; 172:208–223 [View Article]
    [Google Scholar]
  18. Sang MK, Kim KD. Plant growth-promoting rhizobacteria suppressive to Phytophthora blight affect microbial activities and communities in the rhizosphere of pepper (Capsicum annuum L.) in the field. Applied Soil Ecology 2012; 62:88–97 [View Article]
    [Google Scholar]
  19. Jeong JJ, Sang MK, Pathiraja D, Park B, Choi IG et al. Draft genome sequence of phosphate-solubilizing Chryseobacterium sp. strain ISE14, a biocontrol and plant growth-promoting rhizobacterium isolated from cucumber. Genome Announc 2018; 6:e00612-18 [View Article][PubMed]
    [Google Scholar]
  20. Herzog P, Winkler I, Wolking D, Kämpfer P, Lipski A. Chryseobacterium ureilyticum sp. nov., Chryseobacterium gambrini sp. nov., Chryseobacterium pallidum sp. nov. and Chryseobacterium molle sp. nov., isolated from beer-bottling plants. Int J Syst Evol Microbiol 2008; 58:26–33 [View Article][PubMed]
    [Google Scholar]
  21. Zamora L, Fernández-Garayzábal JF, Palacios MA, Sánchez-Porro C, Svensson-Stadler LA et al. Chryseobacterium oncorhynchi sp. nov., isolated from rainbow trout (Oncorhynchus mykiss). Syst Appl Microbiol 2012; 35:24–29 [View Article][PubMed]
    [Google Scholar]
  22. Holmes B, Steigerwalt AG, Nicholson AC. DNA-DNA hybridization study of strains of Chryseobacterium, Elizabethkingia and Empedobacter and of other usually indole-producing non-fermenters of CDC groups IIc, IIe, IIh and IIi, mostly from human clinical sources, and proposals of Chryseobacterium bernardetii sp. nov., Chryseobacterium carnis sp. nov., Chryseobacterium lactis sp. nov., Chryseobacterium nakagawai sp. nov. and Chryseobacterium taklimakanense comb. nov. Int J Syst Evol Microbiol 2013; 63:4639–4662 [View Article][PubMed]
    [Google Scholar]
  23. Pospiech A, Neumann B. A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet 1995; 11:217–218 [View Article][PubMed]
    [Google Scholar]
  24. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  25. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  26. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  27. Felsenstein J. PHYLIP (Phylogeny Inference Package), Version 3.5c Seattle, USA: Department of Genome Sciences, University of Washington; 1993
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  29. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  30. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  31. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969 pp. 21–132
    [Google Scholar]
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  33. Ball RJ, Sellers W. Improved motility medium. Appl Microbiol 1966; 14:670–673[PubMed]
    [Google Scholar]
  34. Gerhardt P. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  35. Barrow GI, Cowan F. Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993
    [Google Scholar]
  36. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  37. Jeong JJ, Lee YJ, Pathiraja D, Park B, Choi IG et al. Draftgenome sequences of Chryseobacterium lactis NCTC11390T isolated from milk, Chryseobacterium oncorhynchi 701B-08T from rainbow trout, and Chryseobacterium viscerum 687B-08Tfrom diseased fish. Genome Announc 2018; 6:e00628-18 [View Article][PubMed]
    [Google Scholar]
  38. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  39. Charif D, Lobry JR. SeqinR 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In Structural Approaches to Sequence Evolution: Molecules, Networks, Populations Berlin Heidelberg: Springer; 2007 pp. 207–232
    [Google Scholar]
  40. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  41. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:161–207
    [Google Scholar]
  42. Shin YK, Lee J-S, Lee KC, Chun CO, Kim H-J et al. Isoprenoid quinone profiles in microbial taxonomy. Korean J Life Sci 1995; 5:211–217
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003091
Loading
/content/journal/ijsem/10.1099/ijsem.0.003091
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error