1887

Abstract

Two Gram-stain negative, moderately halophilic, exopolysaccharide-producing bacteria, designated strains SYSU ZJ2214 and SYSU XM8, were isolated from rearing water and larvae from shrimp hatcheries, respectively. Cells of the strains were aerobic, motile and short-rod-shaped. They grew at NaCl concentrations of 0.5–22 % (w/v), at 4–45 °C and at pH 6–9. Pairwise comparison of 16S rRNA gene sequences revealed that strains SYSU ZJ2214 and SYSU XM8 were most closely related to Halomonas denitrificans M29 (98.3 and 98.2 % similarity, respectively). Strains SYSU ZJ2214 and SYSU XM8 shared an average nucleotide identity of 99.9 % between them. The DNA G+C contents were calculated at 64.1 % for both strains from the draft genome information. The major cellular fatty acids (>5 %) were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C12 : 0 3-OH, and the predominant respiratory quinone was ubiquinone Q-9. Their main polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, four unidentified phospholipids and three unidentified lipids. On the basis of phenotypic, genotypic and phylogenetic data, strains SYSU ZJ2214 and SYSU XM8 merit recognition as representatives of a novel species of the genus Halomonas , for which the name Halomonas litopenaei sp. nov. is proposed. The type strain is SYSU ZJ2214 (=NBRC 111829=KCTC 42974).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003090
2018-10-29
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/12/3914.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003090&mimeType=html&fmt=ahah

References

  1. Vreeland RH, Litchfield CD, Martin EL, Elliot E. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 1980; 30:485–495 [View Article]
    [Google Scholar]
  2. Franzmann PD, Wehmeyer U, Stackebrandt E. Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst Appl Microbiol 1988; 11:16–19 [View Article]
    [Google Scholar]
  3. González-Domenech CM, Martínez-Checa F, Quesada E, Béjar V. Halomonas fontilapidosi sp. nov., a moderately halophilic, denitrifying bacterium. Int J Syst Evol Microbiol 2009; 59:1290–1296 [View Article][PubMed]
    [Google Scholar]
  4. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 2002; 25:360–375 [View Article][PubMed]
    [Google Scholar]
  5. Yoon JH, Lee KC, Kho YH, Kang KH, Kim CJ et al. Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2002; 52:123–130 [View Article][PubMed]
    [Google Scholar]
  6. Jung WY, Lee HJ, Jeon CO. Halomonas garicola sp. nov., isolated from saeu-jeot, a Korean salted and fermented shrimp sauce. Int J Syst Evol Microbiol 2016; 66:731–737 [View Article][PubMed]
    [Google Scholar]
  7. Mormile MR, Romine MF, Garcia MT, Ventosa A, Bailey TJ et al. Halomonas campisalis sp. nov., a denitrifying, moderately haloalkaliphilic bacterium. Syst Appl Microbiol 1999; 22:551–558 [View Article][PubMed]
    [Google Scholar]
  8. Wang YN, Cai H, Chi CQ, Lu AH, Lin XG et al. Halomonas shengliensis sp. nov., a moderately halophilic, denitrifying, crude-oil-utilizing bacterium. Int J Syst Evol Microbiol 2007; 57:1222–1226 [View Article][PubMed]
    [Google Scholar]
  9. Zhao B, Yan Y, Chen S. How could haloalkaliphilic microorganisms contribute to biotechnology?. Can J Microbiol 2014; 60:717–727 [View Article][PubMed]
    [Google Scholar]
  10. Sánchez-Porro C, Martín S, Mellado E, Ventosa A. Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 2003; 94:295–300 [View Article][PubMed]
    [Google Scholar]
  11. Martínez-Checa F, Béjar V, Martínez-Cánovas MJ, Llamas I, Quesada E. Halomonas almeriensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium from Cabo de Gata, Almería, south-east Spain. Int J Syst Evol Microbiol 2005; 55:2007–2011 [View Article][PubMed]
    [Google Scholar]
  12. Llamas I, Béjar V, Martínez-Checa F, Martínez-Cánovas MJ, Molina I et al. Halomonas stenophila sp. nov., a halophilic bacterium that produces sulphate exopolysaccharides with biological activity. Int J Syst Evol Microbiol 2011; 61:2508–2514 [View Article][PubMed]
    [Google Scholar]
  13. Poli A, Nicolaus B, Denizci AA, Yavuzturk B, Kazan D. Halomonas smyrnensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 2013; 63:10–18 [View Article][PubMed]
    [Google Scholar]
  14. Xue M, Liang H, He Y, Wen C. Characterization and in-vivo evaluation of potential probiotics of the bacterial flora within the water column of a healthy shrimp larviculture system. Chinese J Oceanol Limnol 2016; 34:484–491 [View Article]
    [Google Scholar]
  15. Arahal DR, Vreeland RH, Litchfield CD, Mormile MR, Tindall BJ et al. Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int J Syst Evol Microbiol 2007; 57:2436–2446 [View Article][PubMed]
    [Google Scholar]
  16. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society of Microbiology; 2007 pp. 330–393
    [Google Scholar]
  17. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  18. Tarrand JJ, Gröschel DH. Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 1982; 16:772–774[PubMed]
    [Google Scholar]
  19. Lányi B. Classical and rapid identification methods for medically important bacteria. In Colwell RR, Grigorova R. (editors) Methods in Microbiology Academic Press; 1988 pp. 1–67
    [Google Scholar]
  20. Clarke PH. Hydrogen sulphide production by bacteria. J Gen Microbiol 1953; 8:397–407 [View Article][PubMed]
    [Google Scholar]
  21. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963; 85:1183–1184[PubMed]
    [Google Scholar]
  22. Koser SA. Utilization of the salts of organic acids by the colon-aerogenes group. J Bacteriol 1923; 8:493–520[PubMed]
    [Google Scholar]
  23. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic gram-negative rods. Microbiology 1982; 128:1959–1968 [View Article]
    [Google Scholar]
  24. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496 [View Article][PubMed]
    [Google Scholar]
  25. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids [Database on the Internet] 2001 Available from www.microbialid.com/PDF/TechNote_101.pdf
    [Google Scholar]
  26. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  27. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  28. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36[PubMed]
    [Google Scholar]
  29. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  30. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  31. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  32. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  33. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  34. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  35. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  36. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  37. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  38. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  39. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  40. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1984
    [Google Scholar]
  41. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  42. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article][PubMed]
    [Google Scholar]
  43. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  44. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  45. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  46. Kim KK, Jin L, Yang HC, Lee ST. Halomonas gomseomensis sp. nov., Halomonas janggokensis sp. nov., Halomonas salaria sp. nov. and Halomonas denitrificans sp. nov., moderately halophilic bacteria isolated from saline water. Int J Syst Evol Microbiol 2007; 57:675–681 [View Article][PubMed]
    [Google Scholar]
  47. Koh HW, Rani S, Kim SJ, Moon E, Nam SW et al. Halomonas aestuarii sp. nov., a moderately halophilic bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67:4298–4303 [View Article][PubMed]
    [Google Scholar]
  48. Lim JM, Yoon JH, Lee JC, Jeon CO, Park DJ et al. Halomonas koreensis sp. nov., a novel moderately halophilic bacterium isolated from a solar saltern in Korea. Int J Syst Evol Microbiol 2004; 54:2037–2042 [View Article][PubMed]
    [Google Scholar]
  49. Quesada E, Ventosa A, Ruiz-Berraquero F, Ramos-Cormenzana A. Deleya halophila, a New species of moderately halophilic bacteria. Int J Syst Bacteriol 1984; 34:287–292 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.003090
Loading
/content/journal/ijsem/10.1099/ijsem.0.003090
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error