1887

Abstract

A Gram-stain-negative, non-motile, short rod and aerobic bacterium, designated strain SYSU M10001, was isolated from a water sample collected from the coastal region of Pearl River Estuary, Guangdong Province, PR China. Strain SYSU M10001 showed optimal growth at 28 °C, pH 7.0 and in the absence of NaCl. Phylogenetic analyses based on 16S rRNA gene sequences and concatenation of 20 protein markers revealed a distinct lineage for strain SYSU M10001 in the order Rhizobiales . Strain SYSU M10001 showed highest 16S rRNA gene sequence similarities to Hyphomicrobium nitrativorans NL23 (91.1 %) and Hyphomicrobium hollandicum IFAM KB-677 (91.1 %). The respiratory ubiquinone was Q-8. The polar lipids of the strain comprised diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an unidentified aminophospholipid, two unidentified phospholipids and three unidentified lipids. The predominant cellular fatty acids identified were C19 : 0cyclo ω8c, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and C16 : 0. The G+C content was determined to be 65.5 % (genome). On the basis of differences in the phenotypic, physiological and biochemical characteristics, and results of the phylogenetic analyses, strain SYSU M10001 is proposed to represent a novel species in a novel genus for which the name Aestuariivirga litoralis gen. nov., sp. nov. The type strain of the type species Aestuariivirga litoralis is SYSU M10001 (=NBRC 112960=KCTC 52945). Besides, the distinct phylogenetic lineage and the distinct chemotaxonomic profile among the families in the order Rhizobiales indicated that strain SYSU M10001 should represent a new family for which the name Aestuariivirgaceae fam. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003087
2019-01-04
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/2/299.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003087&mimeType=html&fmt=ahah

References

  1. Kuykendall LD. Order VI. Rhizobiales ord. nov. In Brebber DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 2, part C New York, NY: Springer; 2006; p.324
    [Google Scholar]
  2. Fukuda W, Yamada K, Miyoshi Y, Okuno H, Atomi H et al. Rhodoligotrophos appendicifer gen. nov., sp. nov., an appendaged bacterium isolated from a freshwater Antarctic lake. Int J Syst Evol Microbiol 2012;62:1945–1950 [CrossRef][PubMed]
    [Google Scholar]
  3. Patt TE, Cole GC, Hanson RS. Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 1976;26:226–229 [CrossRef]
    [Google Scholar]
  4. Deng SK, Chen GQ, Chen Q, Cai S, Yao L et al. Rhodoligotrophos jinshengii sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2014;64:3325–3330 [CrossRef][PubMed]
    [Google Scholar]
  5. Kämpfer P, Arun AB, Busse HJ, Zhang ZL, Young CC et al. Chelativorans intermedius sp. nov. and proposal to reclassify Thermovum composti as Chelativorans composti comb. nov. Int J Syst Evol Microbiol 2015;65:1646–1652 [CrossRef][PubMed]
    [Google Scholar]
  6. Denner EB, Smith GW, Busse HJ, Schumann P, Narzt T et al. Aurantimonas coralicida gen. nov., sp. nov., the causative agent of white plague type II on Caribbean scleractinian corals. Int J Syst Evol Microbiol 2003;53:1115–1122 [CrossRef][PubMed]
    [Google Scholar]
  7. Thompson JP, Skerman VBD. Azobacteraceae: The Taxonomy and Ecology of the Aerobic Nitrogen-Fixing Bacteria London: Academic Press; 1980; pp.405
    [Google Scholar]
  8. Jordan DC. Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Evol Microbiol 1982;32:136–139
    [Google Scholar]
  9. Frank B. Über die Pilzsymbiose der Leguminosen. Berichte der Deutschen Botanischen Gesellschaft 1889;7:332–346
    [Google Scholar]
  10. Mergaert J, Cnockaert MC, Swings J. Phyllobacterium myrsinacearum (subjective synonym Phyllobacterium rubiacearum) emend. Int J Syst Evol Microbiol 2002;52:1821–1823 [CrossRef][PubMed]
    [Google Scholar]
  11. Meyer KF, Shaw EB. A comparison of the morphologic, cultural and biochemical characteristics of B. Abortus and B. Melitensis: studies on the genus Brucella nov. gen. J Infect Dis 1920;27:173–184 [CrossRef]
    [Google Scholar]
  12. Auling G, Busse H-J, Egli T, El-Banna T, Stackebrandt E. Description of the Gram-negative, obligately aerobic, nitrilotriacetate (nta)-utilizing bacteria as Chelatobacter heintzii, gen. nov., sp. nov., and Chelatococcus asaccharovorans, gen. nov., sp. nov. Syst Appl Microbiol 1993;16:104–112 [CrossRef]
    [Google Scholar]
  13. Hwang CY, Cho BC. Cohaesibacter gelatinilyticus gen. nov., sp. nov., a marine bacterium that forms a distinct branch in the order Rhizobiales, and proposal of Cohaesibacteraceae fam. nov. Int J Syst Evol Microbiol 2008;58:267–277 [CrossRef][PubMed]
    [Google Scholar]
  14. Hou L, Zhang Y, Sun J, Xie X. Acuticoccus yangtzensis gen. nov., sp. nov., a novel member in the family Rhodobacteraceae, isolated from the surface water of the Yangtze Estuary. Curr Microbiol 2015;70:176–182 [CrossRef][PubMed]
    [Google Scholar]
  15. Hiraishi A, Urata K, Satoh T. A new genus of marine budding phototrophic bacteria, Rhodobium gen. nov., which includes Rhodobium orientis sp. nov. and Rhodobium marinum comb. nov. Int J Syst Bacteriol 1995;45:226–234 [CrossRef][PubMed]
    [Google Scholar]
  16. Martineau C, Villeneuve C, Mauffrey F, Villemur R. Hyphomicrobium nitrativorans sp. nov., isolated from the biofilm of a methanol-fed denitrification system treating seawater at the Montreal Biodome. Int J Syst Evol Microbiol 2013;63:3777–3781 [CrossRef][PubMed]
    [Google Scholar]
  17. Huang Z, Guo F, Lai Q, Shao Z. Notoacmeibacter marinus gen. nov., sp. nov., isolated from the gut of a limpet and proposal of Notoacmeibacteraceae fam. nov. in the order Rhizobiales of the class Alphaproteobacteria. Int J Syst Evol Microbiol 2017;67:2527–2531 [CrossRef][PubMed]
    [Google Scholar]
  18. Li JL, Salam N, Wang PD, Chen LX, Jiao JY et al. Discordance between resident and active bacterioplankton in free-living and particle-associated communities in estuary ecosystem. Microb Ecol 2018;76:637–647 [CrossRef][PubMed]
    [Google Scholar]
  19. Ming H, Nie GX, Jiang HC, Yu TT, Zhou EM et al. Paenibacillus frigoriresistens sp. nov., a novel psychrotroph isolated from a peat bog in Heilongjiang, Northern China. Antonie van Leeuwenhoek 2012;102:297–305 [CrossRef][PubMed]
    [Google Scholar]
  20. Leifson E. Atlas of Bacterial Flagellation London: Academic Press; 1960
    [Google Scholar]
  21. Nie GX, Ming H, Li S, Zhou EM, Cheng J et al. Amycolatopsis dongchuanensis sp. nov., an actinobacterium isolated from soil. Int J Syst Evol Microbiol 2012;62:2650–2656 [CrossRef][PubMed]
    [Google Scholar]
  22. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956;178:703–704 [CrossRef][PubMed]
    [Google Scholar]
  23. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978;24:710–715 [CrossRef][PubMed]
    [Google Scholar]
  24. McFaddin JF. Biochemical Tests for Identification of Medical Bacteria USA: Williams & Wilkins Co; 1976
    [Google Scholar]
  25. Smibert R, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  26. Cui HL, Lin ZY, Dong Y, Zhou PJ, Liu SJ. Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 2007;57:2204–2206 [CrossRef][PubMed]
    [Google Scholar]
  27. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979;47:87–95 [CrossRef]
    [Google Scholar]
  28. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  29. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996;46:234–239 [CrossRef][PubMed]
    [Google Scholar]
  30. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990;20:16
    [Google Scholar]
  31. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007;57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  32. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1618 [CrossRef][PubMed]
    [Google Scholar]
  33. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  34. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  35. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  36. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  37. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  38. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  39. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1984
    [Google Scholar]
  40. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  41. Harrison P, Strulo B. SPADES - a process algebra for discrete event simulation. J Logic Comput 2000;10:3–42 [CrossRef]
    [Google Scholar]
  42. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010;11:119 [CrossRef][PubMed]
    [Google Scholar]
  43. Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 2012;28:1033–1034 [CrossRef][PubMed]
    [Google Scholar]
  44. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  45. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000;17:540–552 [CrossRef][PubMed]
    [Google Scholar]
  46. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  47. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016;44:W242–W245 [CrossRef][PubMed]
    [Google Scholar]
  48. Gliesche C, Fesefeldt A, Hirsch P. Hyphomicrobium. In Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J et al. (editors) Bergey's Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Ltd; 2015
    [Google Scholar]
  49. Jin L, Kim KK, Baek SH, Lee ST. Kaistia geumhonensis sp. nov. and Kaistia dalseonensis sp. nov., two members of the class Alphaproteobacteria. Int J Syst Evol Microbiol 2011;61:2577–2581 [CrossRef][PubMed]
    [Google Scholar]
  50. Im WT, Yokota A, Kim MK, Lee ST. Kaistia adipata gen. nov., sp. nov., a novel α-proteobacterium. J Gen Appl Microbiol 2004;50:249–254[PubMed]
    [Google Scholar]
  51. Nakagawa Y, Sakane T, Yokota A. Devosia. In Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J et al. (editors) Bergey's Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Ltd; 2015
    [Google Scholar]
  52. Zeevi Ben Yosef D, Ben-Dov E, Kushmaro A. Amorphus coralli gen. nov., sp. nov., a marine bacterium isolated from coral mucus, belonging to the order Rhizobiales. Int J Syst Evol Microbiol 2008;58:2704–2709 [CrossRef][PubMed]
    [Google Scholar]
  53. Wang YX, Liu JH, Chen YG, Zhang XX, Wang ZG et al. Amorphus orientalis sp. nov., an exopolysaccharide-producing bacterium isolated from salt mine sediment. Int J Syst Evol Microbiol 2010;60:1750–1754 [CrossRef][PubMed]
    [Google Scholar]
  54. Hwang JM, Chung EJ, Park JA, Jeong JH, Jeon CO et al. Amorphus suaedae sp. nov., isolated from the root of a tidal flat plant, Suaeda maritima. Int J Syst Evol Microbiol 2013;63:3868–3872 [CrossRef][PubMed]
    [Google Scholar]
  55. Dedysh SN, Dunfield PF. Methyloferula. In Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J et al. (editors) Bergey's Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Ltd; 2015
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003087
Loading
/content/journal/ijsem/10.1099/ijsem.0.003087
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error