1887

Abstract

An aerobic, Gram-stain-negative, polar-flagellated, rod-shaped bacterium, designated as SC2-7, was isolated from the dust collector at a pig farm located in Wanju-gun, Jeollabuk-do, Republic of Korea. Growth occurred at 10–37 °C (optimum, 28–30 °C), pH 6.0–10.0 (optimum, 7.0–8.0) and in the presence of 0–3 % (w/v) NaCl (optimum, 0 %) on Reasoner’s 2A medium. The phylogenetic tree based on the 16S rRNA gene sequences revealed that strain SC2-7 was a member of the family Comamonadaceae , forming a robust cluster with the genera Alicycliphilus , Oryzisolibacter and Melaminivora . The 16S rRNA gene sequences of strain SC2-7 showed the highest sequence similarities to Alicycliphilus denitrificans K601 (97.2 %), Oryzisolibacter propanilivorax EPL6 (97.0 %), Melaminivora alkalimesophila CY1 (96.9 %), Diaphorobacter polyhydroxybutyrativorans SL-205 (96.6 %), Diaphorobacter nitroreducens NA10B (96.6 %) and Melaminivora jejuensis KBB12 (96.5 %). The tree based on the gyrA gene sequences also showed that strain SC2-7 fell into a phylogenetic position similar to that based on the 16S rRNA gene sequences. The polar lipids present were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, an unidentified aminolipid and an unidentified phospholipid. The predominant quinone was ubiquione-8. The major fatty acids were summed feature 3 (including C16 : 1ω6c and/or C16 : 1ω7c), C16 : 0 and summed feature 8 (including C18 : 1ω6c and/or C18 : 1 ω7c). The genomic DNA G+C content was 69.1 mol%. On the basis of the phenotypic, phylogenetic and chemotaxonomic data presented here, strain SC2-7 represents a novel species of a new genus, for which the name Pulveribacter suum gen. nov., sp. nov., is proposed. The type strain of Pulveribacter suum is SC2-7 (=KACC 19309=NBRC 113102).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003082
2019-05-02
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/7/1864.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003082&mimeType=html&fmt=ahah

References

  1. Willems A, de Ley J, Gillis M, Kersters K. Comamonadaceae, a new family encompassing the acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis 1969). Int J Syst Bacteriol 1991; 41:445–450 [View Article]
    [Google Scholar]
  2. Vaz-Moreira I, Narciso-da-Rocha C, Lopes AR, Carvalho G, Lobo-da-Cunha A et al. Oryzisolibacter propanilivorax gen. nov., sp. nov., a propanil-degrading bacterium. Int J Syst Evol Microbiol 2017; 67:3752–3758 [View Article][PubMed]
    [Google Scholar]
  3. Khan IU, Hussain F, Tian Y, Habib N, Xian WD et al. Tibeticola sediminis gen. nov., sp. nov., a thermophilic bacterium isolated from a hot spring. Int J Syst Evol Microbiol 2017; 67:1133–1139 [View Article][PubMed]
    [Google Scholar]
  4. Fang W, Li Y, Xue H, Tian G, Wang L et al. Corticibacter populi gen. nov., sp. nov., a new member of the family Comamonadaceae, from the bark of Populus euramericana . Int J Syst Evol Microbiol 2015; 65:3333–3338 [View Article][PubMed]
    [Google Scholar]
  5. Hahn MW, Kasalický V, Jezbera J, Brandt U, Jezberová J et al. Limnohabitans curvus gen. nov., sp. nov., a planktonic bacterium isolated from a freshwater lake. Int J Syst Evol Microbiol 2010; 60:1358–1365 [View Article][PubMed]
    [Google Scholar]
  6. Kim JY, Park SH, Lee DH, Song G, Kim YJ. Melaminivora jejuensis sp. nov., isolated from Swinery waste. Int J Syst Evol Microbiol 2018; 68:9–13 [View Article][PubMed]
    [Google Scholar]
  7. Mechichi T, Stackebrandt E, Fuchs G. Alicycliphilus denitrificans gen. nov., sp. nov., a cyclohexanol-degrading, nitrate-reducing beta-proteobacterium. Int J Syst Evol Microbiol 2003; 53:147–152 [View Article][PubMed]
    [Google Scholar]
  8. Wang H, Li J, Hu A, Qin D, Xu H et al. Melaminivora alkalimesophila gen. nov., sp. nov., a melamine-degrading betaproteobacterium isolated from a melamine-producing factory. Int J Syst Evol Microbiol 2014; 64:1938–1944 [View Article][PubMed]
    [Google Scholar]
  9. Breznak JA, Costilow RN. Physicochemical factors in growth. In Gerhardt P P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 137–154
    [Google Scholar]
  10. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article][PubMed]
    [Google Scholar]
  11. Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  12. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  13. Yoon SH, Sm H, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617
    [Google Scholar]
  14. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  15. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  18. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  19. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  20. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  21. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  22. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
  23. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003082
Loading
/content/journal/ijsem/10.1099/ijsem.0.003082
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error