1887

Abstract

In the present study, we describe two novel Gram-stain-positive, irregular rod-shaped bacterial strains, 78 and 601, that had been isolated from the faeces of Tibetan antelopes at the Hoh Xil Nature Reserve, Qinghai–Tibet Plateau, China. The cells were aerobic, oxidase-negative and catalase-positive. When cultured on brain–heart infusion agar supplemented with 5 % sheep blood, colonies were cream in colour, circular, smooth and convex. Phylogenetic analysis based on the full-length 16S rRNA sequences revealed that type strain 78 and strain 601 belong to the genus Nocardioides, sharing the highest similarity to Nocardioides solisilvae JCM 31492 (98.3 %), Nocardioides gilvus XZ17 (97.4 %) and Nocardioides daejeonensis JCM 16922 (97.4 %). The average nucleotide identity values between the two novel strains and the three closely related type strains of the genus Nocardioides were lower than the 95–96 % threshold. The DNA G+C content of strains 78 and 601 were 71.2 and 71.3 mol% respectively. MK-8 (H4) was the predominant respiratory quinone and ll-2,6-diaminopimelic acid was the diagnostic diamino acid in its cell-wall peptidoglycan. Its polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, an unidentified phospholipid and an unidentified lipid. The main whole-cell sugars were rhamnose, xylose and galactose and the major fatty acids (>10 %) were C17 : 1ω8c, iso-C16 : 0 and C18 : 1ω9c. These data supported the affiliation of strains 78 and 601 to genus Nocardioides. Based on evidence collected from the phenotypic, genotypic and phylogenetic analyses, we propose a novel species named Nocardioides houyundeii sp. nov. The type strain is 78 (=CGMCC 4.7461=DSM 106424).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003076
2018-10-26
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/12/3874.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003076&mimeType=html&fmt=ahah

References

  1. Prauser H. Nocardioides, a new genus of the order Actinomycetales. Int J Syst Evol Microbiol 1976; 26:58–65
    [Google Scholar]
  2. Lee DW, Lee SY, Yoon JH, Lee SD. Nocardioides ultimimeridianus sp. nov. and Nocardioides maradonensis sp. nov., isolated from rhizosphere soil. Int J Syst Evol Microbiol 2011; 61:1933–1937 [View Article][PubMed]
    [Google Scholar]
  3. Lee SD, Seong CN. Nocardioides opuntiae sp. nov., isolated from soil of a cactus. Int J Syst Evol Microbiol 2014; 64:2094–2099 [View Article][PubMed]
    [Google Scholar]
  4. Zhang DF, Zhong JM, Zhang XM, Jiang Z, Zhou EM et al. Nocardioides nanhaiensis sp. nov., an actinobacterium isolated from a marine sediment sample. Int J Syst Evol Microbiol 2014; 64:2718–2722 [View Article][PubMed]
    [Google Scholar]
  5. Glaeser SP, Mcinroy JA, Busse HJ, Kämpfer P. Nocardioides zeae sp. nov., isolated from the stem of Zea mays. Int J Syst Evol Microbiol 2014; 64:2491–2496 [View Article][PubMed]
    [Google Scholar]
  6. Kämpfer P, Glaeser SP, Mcinroy JA, Busse HJ. Nocardioides zeicaulis sp. nov., an endophyte actinobacterium of maize. Int J Syst Evol Microbiol 2016; 66:1869–1874 [View Article][PubMed]
    [Google Scholar]
  7. Xu H, Zhang S, Cheng J, Asem MD, Zhang MY et al. Nocardioides ginkgobilobae sp. nov., an endophytic actinobacterium isolated from the root of the living fossil Ginkgo biloba L. Int J Syst Evol Microbiol 2016; 66:2013–2018 [View Article][PubMed]
    [Google Scholar]
  8. Tóth EM, Kéki Z, Homonnay ZG, Borsodi AK, Márialigeti K et al. Nocardioides daphniae sp. nov., isolated from Daphnia cucullata (Crustacea: Cladocera). Int J Syst Evol Microbiol 2008; 58:78–83 [View Article][PubMed]
    [Google Scholar]
  9. Kubota M, Kawahara K, Sekiya K, Uchida T, Hattori Y et al. Nocardioides aromaticivorans sp. nov., a dibenzofuran-degrading bacterium isolated from dioxin-polluted environments. Syst Appl Microbiol 2005; 28:165–174 [View Article][PubMed]
    [Google Scholar]
  10. Schippers A, Schumann P, Spröer C. Nocardioides oleivorans sp. nov., a novel crude-oil-degrading bacterium. Int J Syst Evol Microbiol 2005; 55:1501–1504 [View Article][PubMed]
    [Google Scholar]
  11. Yoon JH, Cho YG, Lee ST, Suzuki K, Nakase T et al. Nocardioides nitrophenolicus sp. nov., a p-nitrophenol-degrading bacterium. Int J Syst Bacteriol 1999; 49 Pt 2:675–680 [View Article][PubMed]
    [Google Scholar]
  12. Yoon JH, Rhee SK, Lee JS, Park YH, Lee ST. Nocardioides pyridinolyticus sp. nov., a pyridine-degrading bacterium isolated from the oxic zone of an oil shale column. Int J Syst Bacteriol 1997; 47:933–938 [View Article][PubMed]
    [Google Scholar]
  13. Yoon JH, Lee JK, Jung SY, Kim JA, Kim HK et al. Nocardioides kongjuensis sp. nov., an N-acylhomoserine lactone-degrading bacterium. Int J Syst Evol Microbiol 2006; 56:1783–1787 [View Article][PubMed]
    [Google Scholar]
  14. Sun LN, Zhang J, Gong FF, Wang X, Hu G et al. Nocardioides soli sp. nov., a carbendazim-degrading bacterium isolated from soil under the long-term application of carbendazim. Int J Syst Evol Microbiol 2014; 64:2047–2052 [View Article][PubMed]
    [Google Scholar]
  15. Bai X, Xiong Y, Lu S, Jin D, Lai X et al. Streptococcuspantholopis sp. nov., isolated from faeces of the Tibetan antelope (Pantholops hodgsonii). Int J Syst Evol Microbiol 2016; 66:3281–3286 [View Article][PubMed]
    [Google Scholar]
  16. Ge RL, Cai Q, Shen YY, San A, Ma L et al. Draft genome sequence of the Tibetan antelope. Nat Commun 2013; 4:1858 [View Article][PubMed]
    [Google Scholar]
  17. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  19. Kolaczkowski B, Thornton JW. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 2004; 431:980–984 [View Article][PubMed]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  21. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  24. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article][PubMed]
    [Google Scholar]
  25. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 2012; 61:1061–1067 [View Article][PubMed]
    [Google Scholar]
  26. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28:3150–3152 [View Article][PubMed]
    [Google Scholar]
  27. Zhang HX, Wang K, Xu ZX, Chen GJ, Du ZJ. Nocardioides gilvus sp. nov., isolated from Namtso Lake. Antonie Van Leeuwenhoek 2016; 109:1367–1374 [View Article][PubMed]
    [Google Scholar]
  28. Sultanpuram VR, Mothe T, Mohammed F. Nocardioides solisilvae sp. nov., isolated from a forest soil. Antonie Van Leeuwenhoek 2015; 107:1599–1606 [View Article][PubMed]
    [Google Scholar]
  29. Woo SG, Srinivasan S, Yang J, Jung YA, Kim MK et al. Nocardioides daejeonensis sp. nov., a denitrifying bacterium isolated from sludge in a sewage-disposal plant. Int J Syst Evol Microbiol 2012; 62:1199–1203 [View Article][PubMed]
    [Google Scholar]
  30. Beaz-Hidalgo R, Hossain MJ, Liles MR, Figueras MJ. Strategies to avoid wrongly labelled genomes using as example the detected wrong taxonomic affiliation for aeromonas genomes in the GenBank database. PLoS One 2015; 10:e0115813 [View Article][PubMed]
    [Google Scholar]
  31. Li X, Huang Y, Whitman WB. The relationship of the whole genome sequence identity to DNA hybridization varies between genera of prokaryotes. Antonie Van Leeuwenhoek 2015; 107:241–249 [View Article][PubMed]
    [Google Scholar]
  32. Rosselló-Móra R, Amann R. Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 2015; 38:209–216 [View Article][PubMed]
    [Google Scholar]
  33. Stropko SJ, Pipes SE, Newman JD. Genome-based reclassification of Bacillus cibi as a later heterotypic synonym of Bacillus indicus and emended description of Bacillus indicus. Int J Syst Evol Microbiol 2014; 64:3804–3809 [View Article][PubMed]
    [Google Scholar]
  34. Yi H, Chun J. Neisseria weaveri Andersen et al. 1993 is a later heterotypic synonym of Neisseria weaveri Holmes et al. 1993. Int J Syst Evol Microbiol 2015; 65:463–464 [View Article][PubMed]
    [Google Scholar]
  35. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  36. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. 1990 pp. 1–7
    [Google Scholar]
  37. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar Lipid Composition in the Classification of Nocardia and Related Bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
  38. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  39. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  40. Komagata K, Suzuki KI. 4 Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  41. Whiton RS, Lau P, Morgan SL, Gilbart J, Fox A. Modifications in the alditol acetate method for analysis of muramic acid and other neutral and amino sugars by capillary gas chromatography-mass spectrometry with selected ion monitoring. J Chromatogr 1985; 347:109–120 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003076
Loading
/content/journal/ijsem/10.1099/ijsem.0.003076
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error