1887

Abstract

Two Gram-stain-negative, strictly aerobic, non-motile, non-spore-forming, rod-shaped bacteria, designated as SY3-15and SY3-13, were isolated from a seawater sample of the South China Sea. Colonies were 0.5–1.0 mm in diameter, smooth, circular, convex and translucent after growth on marine agar at 37 °C for 3 days. The strains were found to grow at 20–50 °C (optimum, 42 °C), pH 6.0–8.5 (optimum, pH 6.5–7.5) and with 0.5–6.0 % (w/v) NaCl (optimum, 1.5–2.0 %). Chemotaxonomic analysis showed the sole respiratory quinone to be ubiquinone-10, the major fatty acids (>10 %) were C16 : 0 3-OH, C19 : 0cyclo ω9c, C18 : 1 3-OH and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), and the polar lipids were phosphatidylglycerol, two unidentified aminolipids and three unidentified lipids. The DNA G+C content was 67.2–67.4 mol% calculated by genome. The 16S rRNA gene sequences of strains SY3-15 and SY3-13 were identical and related to the genus Lutibaculum with a similarity of 92.1 %. The 16S rRNA gene phylogenetic trees reconstructed with neighbour-joining, maximum-parsimony and minimum-evolution methods showed that the strains constituted a deep and separated branch from other families of Alphaproteobacteria , and the phylogenetic trees based on concatenated 163 protein sequences from genome sequences showed that the clade in which strains SY3-15 and SY3-13 located was separated from the clade of the other orders of Alphaproteobacteria , indicating it may represent a novel family of a novel order. Based on their phenotypic properties and their phylogenetic distinctiveness, we propose strains SY3-15 (=MCCC 1K03467=KCTC 62335) and SY3-13 (=MCCC 1K03466=KCTC 62329) to represent a novel species of a novel genus with the name Minwuia thermotolerans gen. nov., sp. nov., and we propose Minwuiaceae fam. nov. and Minwuiales ord. nov. with Minwuia as the type genus.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003073
2018-10-16
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/12/3856.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003073&mimeType=html&fmt=ahah

References

  1. Rosenberg E, DeLong FE, Lory S, Stackebrandt E, Thompson F et al. The Prokaryotes - Alphaproteobacteria and Betaproteobacteria, 4th ed. New York: Springer; 2014
    [Google Scholar]
  2. Parte AC. LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–D616 [View Article][PubMed]
    [Google Scholar]
  3. Williams ST, Davies FL. Use of antibiotics for selective isolation and enumeration of actinomycetes in soil. J Gen Microbiol 1965; 38:251–261 [View Article][PubMed]
    [Google Scholar]
  4. Zhang XQ, Wu YH, Zhou X, Zhang X, Xu XW et al. Parvularcula flava sp. nov., an alphaproteobacterium isolated from surface seawater of the South China Sea. Int J Syst Evol Microbiol 2016; 66:3498–3502 [View Article][PubMed]
    [Google Scholar]
  5. Pan J, Sun C, Zhang XQ, Huo YY, Zhu XF et al. Paracoccus sediminis sp. nov., isolated from Pacific Ocean marine sediment. Int J Syst Evol Microbiol 2014; 64:2512–2516 [View Article][PubMed]
    [Google Scholar]
  6. Su Y, Han S, Wang R, Yu X, Fu G et al. Microbaculum marinum gen. nov., sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2017; 67:812–817 [View Article][PubMed]
    [Google Scholar]
  7. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963; 85:1183–1184[PubMed]
    [Google Scholar]
  8. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  9. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  10. Sun C, Fu GY, Zhang CY, Hu J, Xu L et al. Isolation and complete genome sequence of Algibacter alginolytica sp. nov., a novel seaweed-degrading Bacteroidetes bacterium with diverse putative polysaccharide utilization loci. Appl Environ Microbiol 2016; 82:2975–2987 [View Article][PubMed]
    [Google Scholar]
  11. Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S et al. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res 2017; 27:768–777 [View Article][PubMed]
    [Google Scholar]
  12. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  13. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  15. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  16. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  17. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  18. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  19. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  20. Fischer S, Brunk BP, Chen F, Gao X, Harb OS et al. Using OrthoMCL to assign proteins to OrthoMCL-DB groups or to cluster proteomes into new ortholog groups. Curr Protoc Bioinformatics 2011; 12:1–19 [View Article][PubMed]
    [Google Scholar]
  21. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article][PubMed]
    [Google Scholar]
  22. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article][PubMed]
    [Google Scholar]
  23. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article][PubMed]
    [Google Scholar]
  24. Wang Z, Leary DH, Malanoski AP, Li RW, Hervey WJ et al. A previously uncharacterized, nonphotosynthetic member of the Chromatiaceae is the primary CO2-fixing constituent in a self-regenerating biocathode. Appl Environ Microbiol 2015; 81:699–712 [View Article][PubMed]
    [Google Scholar]
  25. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  26. Siamphan C, Kim H, Lee JS, Kim W. Sneathiella chungangensis sp. nov., isolated from a marine sand, and emended description of the genus Sneathiella. Int J Syst Evol Microbiol 2014; 64:1468–1472 [View Article][PubMed]
    [Google Scholar]
  27. Kurahashi M, Fukunaga Y, Harayama S, Yokota A. Sneathiella glossodoripedis sp. nov., a marine alphaproteobacterium isolated from the nudibranch Glossodoris cincta, and proposal of Sneathiellales ord. nov. and Sneathiellaceae fam. nov. Int J Syst Evol Microbiol 2008; 58:548–552 [View Article][PubMed]
    [Google Scholar]
  28. Jordan EM, Thompson FL, Zhang XH, Li Y, Vancanneyt M et al. Sneathiella chinensis gen. nov., sp. nov., a novel marine alphaproteobacterium isolated from coastal sediment in Qingdao, China. Int J Syst Evol Microbiol 2007; 57:114–121 [View Article][PubMed]
    [Google Scholar]
  29. Balcázar JL, Planas M, Pintado J. Oceanibacterium hippocampi gen. nov., sp. nov., isolated from cutaneous mucus of wild seahorses (Hippocampus guttulatus). Antonie van Leeuwenhoek 2012; 102:187–191 [View Article][PubMed]
    [Google Scholar]
  30. Albuquerque L, Rainey FA, Nobre MF, da Costa MS. Oceanicella actignis gen. nov., sp. nov., a halophilic slightly thermophilic member of the Alphaproteobacteria. Syst Appl Microbiol 2012; 35:385–389 [View Article][PubMed]
    [Google Scholar]
  31. Yin D, Chen L, Ao J, Ai C, Chen X. Pleomorphobacterium xiamenense gen. nov., sp. nov., a moderate thermophile isolated from a terrestrial hot spring. Int J Syst Evol Microbiol 2013; 63:1868–1873 [View Article][PubMed]
    [Google Scholar]
  32. Albuquerque L, Rainey FA, Pena A, Tiago I, Veríssimo A et al. Tepidamorphus gemmatus gen. nov., sp. nov., a slightly thermophilic member of the Alphaproteobacteria. Syst Appl Microbiol 2010; 33:60–66 [View Article][PubMed]
    [Google Scholar]
  33. Kumar PA, Srinivas TN, Manasa P, Madhu S, Shivaji S. Lutibaculum baratangense gen. nov., sp. nov., a proteobacterium isolated from a mud volcano. Int J Syst Evol Microbiol 2012; 62:2025–2031 [View Article][PubMed]
    [Google Scholar]
  34. Zhen-Li Z, Xin-Qi Z, Nan W, Wen-Wu Z, Xu-Fen Z et al. Amphiplicatus metriothermophilus gen. nov., sp. nov., a thermotolerant alphaproteobacterium isolated from a hot spring. Int J Syst Evol Microbiol 2014; 64:2805–2811 [View Article][PubMed]
    [Google Scholar]
  35. Sun C, Wu C, Su Y, Wang RJ, Fu GY et al. Hyphococcus flavus gen. nov., sp. nov., a novel alphaproteobacterium isolated from deep seawater. Int J Syst Evol Microbiol 2017; 67:4024–4031 [View Article][PubMed]
    [Google Scholar]
  36. Sun C, Wang RJ, Su Y, Fu GY, Zhao Z et al. Hyphobacterium vulgare gen. nov., sp. nov., a novel alphaproteobacterium isolated from seawater. Int J Syst Evol Microbiol 2017; 67:1169–1176 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003073
Loading
/content/journal/ijsem/10.1099/ijsem.0.003073
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error