1887

Abstract

Clinical isolates belonging to Corynebacterium diphtheriae biovar Belfanti were characterized by genomic sequencing and biochemical and chemotaxonomic analyses. Phylogenetic analyses indicated that biovar Belfanti represents a branch that is clearly demarcated from C. diphtheriae strains of biovars Mitis and Gravis. The average nucleotide identity of isolates of biovar Belfanti with C. diphtheriae type strain NCTC 11397 (biovar Gravis) was 94.85 %. The inability to reduce nitrate differentiated biovar Belfanti from other strains of C. diphtheriae . On the basis of these results, we propose the name Corynebacterium belfantii sp. nov. for the group of strains previously considered as C. diphtheriae biovar Belfanti. The type strain of C. belfantii is FRC0043 (=CIP 111412=DSM 105776). Strains of C. belfantii were isolated mostly from human respiratory samples.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003069
2018-10-24
2019-10-18
Loading full text...

Full text loading...

References

  1. Yu QL, Yan ZF, He X, Tian FH, Jia CW et al. Corynebacterium defluvii sp. nov., isolated from Sewage. J Microbiol 2017;55:435–439 [CrossRef][PubMed]
    [Google Scholar]
  2. Bernard KA, Funke G, Corynebacteriaeceae FI. In: Bergey’s Manual of Systematic Bacteriology: Volume 5: The Actinobacteria. Springer Science & Business Media 2012
    [Google Scholar]
  3. Burkovski A. Diphtheria and its etiological agents. In Burkovski A. (editor) Corynebacterium Diphtheriae and Related Toxigenic Species. Springer; pp.1–10
    [Google Scholar]
  4. Bolt F, Cassiday P, Tondella ML, Dezoysa A, Efstratiou A et al. Multilocus sequence typing identifies evidence for recombination and two distinct lineages of Corynebacterium diphtheriae. J Clin Microbiol 2010;48:4177–4185 [CrossRef][PubMed]
    [Google Scholar]
  5. Trost E, Blom J, Soares SC, Huang IH, Al-Dilaimi A et al. Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia. J Bacteriol 2012;194:3199–3215 [CrossRef][PubMed]
    [Google Scholar]
  6. Farfour E, Badell E, Dinu S, Guillot S, Guiso N. Microbiological changes and diversity in autochthonous non-toxigenic Corynebacterium diphtheriae isolated in France. Clin Microbiol Infect 2013;19:980–987 [CrossRef][PubMed]
    [Google Scholar]
  7. Sangal V, Hoskisson PA. Evolution, epidemiology and diversity of Corynebacterium diphtheriae: New perspectives on an old foe. Infect Genet Evol 2016;43:364–370 [CrossRef][PubMed]
    [Google Scholar]
  8. Thompson JS, Gates-Davis DR, Yong DC. Rapid microbiochemical identification of Corynebacterium diphtheriae and other medically important corynebacteria. J Clin Microbiol 1983;18:926–929[PubMed]
    [Google Scholar]
  9. Anderson JS, Happold FC, McLeod JW, Thomson JG. On the existence of two forms of diphtheria bacillus—B. Diphtheriæ gravis and B. Diphtheriæ mitis—and a new medium for their differentiation and for the bacteriological diagnosis of diphtheria. J Pathol Bacteriol 1931;34:667–681 [CrossRef]
    [Google Scholar]
  10. McLeod JW. The types mitis, intermedius and gravis of Corynebacterium diphtheriae: a review of observations during the past ten years. Bacteriol Rev 1943;7:1–41[PubMed]
    [Google Scholar]
  11. Anderson JS, Cooper KE, Happold FC, McLeod JW. Incidence and correlation with clinical severity ofgravis, mitis, and intermediate types of diphtheria bacillus in a series of 500 cases at Leeds. J Pathol Bacteriol 1933;36:169–182 [CrossRef]
    [Google Scholar]
  12. Bezjak V. Differentiation of Corynebacterium diphtheriae of the mitis type found in diphtheria and ozaena. I. Biochemical properties. Antonie van Leeuwenhoek 1954;20:269–272 [CrossRef][PubMed]
    [Google Scholar]
  13. Belfanti S, Della V. Giorn Acad Med Torino 1896;2:149
    [Google Scholar]
  14. Efstratiou A, George RC. Laboratory guidelines for the diagnosis of infections caused by Corynebacterium diphtheriae and C. ulcerans. World Health Organization. Commun Dis Public Health 1999;2:250–257[PubMed]
    [Google Scholar]
  15. Pimenta FP, Matias GA, Pereira GA, Camello TC, Alves GB et al. A PCR for dtxR gene: application to diagnosis of non-toxigenic and toxigenic Corynebacterium diphtheriae. Mol Cell Probes 2008;22:189–192 [CrossRef][PubMed]
    [Google Scholar]
  16. Riegel P, Ruimy R, de Briel D, Prévost G, Jehl F et al. Taxonomy of Corynebacterium diphtheriae and related taxa, with recognition of Corynebacterium ulcerans sp. nov. nom. rev. FEMS Microbiol Lett 1995;126:271–276 [CrossRef][PubMed]
    [Google Scholar]
  17. Cerdeño-Tárraga AM, Efstratiou A, Dover LG, Holden MT, Pallen M et al. The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res 2003;31:6516–6523 [CrossRef][PubMed]
    [Google Scholar]
  18. Pacheco LG, Pena RR, Castro TL, Dorella FA, Bahia RC et al. Multiplex PCR assay for identification of Corynebacterium pseudotuberculosis from pure cultures and for rapid detection of this pathogen in clinical samples. J Med Microbiol 2007;56:480–486 [CrossRef][PubMed]
    [Google Scholar]
  19. Khamis A, Raoult D, La Scola B. rpoB gene sequencing for identification of Corynebacterium species. J Clin Microbiol 2004;42:3925–3931 [CrossRef][PubMed]
    [Google Scholar]
  20. Linos A, Steinbüchel A, Spröer C, Kroppenstedt RM. Gordonia polyisoprenivorans sp. nov., a rubber-degrading actinomycete isolated from an automobile tyre. Int J Syst Bacteriol 1999;49:1785–1791 [CrossRef][PubMed]
    [Google Scholar]
  21. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
    [Google Scholar]
  22. Rhuland LE, Work E, Denman RF, Hoare DS. The behavior of the isomers of α,ε-diaminopimelic acid on paper chromatograms. J Am Chem Soc 1955;77:4844–4846 [CrossRef]
    [Google Scholar]
  23. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  24. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  25. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  26. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. Methods for General and Molecular Microbiolog, Third ed. Washington: AmericanSociety for Microbiology; 2007; pp.330–393
    [Google Scholar]
  27. Hauser D, Popoff MR, Kiredjian M, Boquet P, Bimet F. Polymerase chain reaction assay for diagnosis of potentially toxinogenic Corynebacterium diphtheriae strains: correlation with ADP-ribosylation activity assay. J Clin Microbiol 1993;31:2720–2723[PubMed]
    [Google Scholar]
  28. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  29. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32:929–931 [CrossRef][PubMed]
    [Google Scholar]
  30. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  32. Almeida S, Sousa C, Abreu V, Diniz C, Dorneles EM et al. Exploration of nitrate reductase metabolic pathway in Corynebacterium pseudotuberculosis. Int J Genomics 2017;2017:1–12 [CrossRef][PubMed]
    [Google Scholar]
  33. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016;17:132 [CrossRef][PubMed]
    [Google Scholar]
  34. Tamura K, Kumar S. Evolutionary distance estimation under heterogeneous substitution pattern among lineages. Mol Biol Evol 2002;19:1727–1736 [CrossRef][PubMed]
    [Google Scholar]
  35. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015;32:2798–2800 [CrossRef][PubMed]
    [Google Scholar]
  36. Guénoche A, Garreta H. Can we have confidence in a tree representation?. In Gascuel O, Sagot M-F. (editors) Proceedings of JOBIM 2000. Lecture Notes in Computer Science Berlin, Heidelberg: Springer; 2000; pp.45–46
    [Google Scholar]
  37. Berger A, Hogardt M, Konrad R, Sing A. Detection methods for laboratory diagnosis of diphtheria. In Burkovski A. (editor) Corynebacterium diphtheriae and Related Toxigenic Species: Genomics, Pathogenicity and Applications Springer; 2014
    [Google Scholar]
  38. Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 2006;361:1929–1940 [CrossRef][PubMed]
    [Google Scholar]
  39. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  40. Yassin AF. Detection and characterization of mycolic acids and their use in taxonomy and classification. Methods Microbiol 2011;38:207–2327
    [Google Scholar]
  41. Burkovski A. Cell envelope of corynebacteria: structure and influence on pathogenicity. ISRN Microbiol 2013;2013:1–11 [CrossRef][PubMed]
    [Google Scholar]
  42. Collins MD, Goodfellow M, Minnikin DE. Isoprenoid quinones in the classification of coryneform and related bacteria. J Gen Microbiol 1979;110:127–136 [CrossRef][PubMed]
    [Google Scholar]
  43. de Briel D, Couderc F, Riegel P, Jehl F, Minck R. High-performance liquid chromatography of corynomycolic acids as a tool in identification of Corynebacterium species and related organisms. J Clin Microbiol 1992;30:1407–1417[PubMed]
    [Google Scholar]
  44. Bernard KA, Bellefeuille M, Ewan EP. Cellular fatty acid composition as an adjunct to the identification of asporogenous, aerobic Gram-positive rods. J Clin Microbiol 1991;29:83–89[PubMed]
    [Google Scholar]
  45. Suzuki K-I, Komagata K. Taxonomic significance of cellular fatty acid composition in some coryneform bacteria. Int J Syst Evol Microbiol 1983;33:188–200
    [Google Scholar]
  46. Komura I, Yamada K, Otsuka S-I, Komagata K. Taxonomic significance of phospholipids in coryneform and nocardioform bacteria. J Gen Appl Microbiol 1975;21:251–261 [CrossRef]
    [Google Scholar]
  47. Frischmann A, Knoll A, Hilbert F, Zasada AA, Kämpfer P et al. Corynebacterium epidermidicanis sp. nov., isolated from skin of a dog. Int J Syst Evol Microbiol 2012;62:2194–2200 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003069
Loading
/content/journal/ijsem/10.1099/ijsem.0.003069
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error