1887

Abstract

Strain 6GN-30, a Gram-stain-negative, aerobic, non-spore-forming, rod-shaped, motile bacterium was isolated from Ephedra sinica roots in the Kumtag Desert. On the basis of the 16S rRNA gene sequence, the isolate represented a member of the genus Mesorhizobium of the family Phyllobacteriaceae . The results of a phylogenetic analysis indicated that 6GN-30 was phylogenetically related to Mesorhizobium soli NHI-8. Strain 6GN-30 grew at a salinity of 0–1.0 % (w/v) NaCl (with optimum growth in the absence of NaCl), pH 6.0–9.0 (optimum 7.0–8.0) and 15–45 °C. The major cellular fatty acids were summed feature 8 (C18 : 1ω7c/C18 : 1ω6c), C19 : 0cyclo ω8c, iso-C17 : 0, C18 : 0, and C16 : 0. The draft genome of 6GN-30 was 6.11 Mb long, with a DNA G+C content of 66.4 mol%. The average nucleotide identity to M. soli NHI-8 was 84.32 %. The strain contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine,aminophospholipids and phospholipids. The chemotaxonomic, phylogenetic and phenotypic data indicate that 6GN-30 represents a novel species of the genus Mesorhizobium for which the name Mesorhizobium ephedrae sp. nov. is proposed. The type strain is 6GN-30 (=ACCC 60073=KCTC 62410).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003044
2018-10-01
2019-08-19
Loading full text...

Full text loading...

References

  1. Jarvis BDW, van Berkum P, Chen WX, Nour SM, Fernandez MP et al. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 1997;47:895–898 [CrossRef]
    [Google Scholar]
  2. Martínez-Hidalgo P, Ramírez-Bahena MH, Flores-Félix JD, Rivas R, Igual JM et al. Revision of the taxonomic status of type strains of Mesorhizobium loti and reclassification of strain USDA 3471T as the type strain of Mesorhizobium erdmanii sp. nov. and ATCC 33669T as the type strain of Mesorhizobium jarvisii sp. nov. Int J Syst Evol Microbiol 2015;65:1703–1708 [CrossRef][PubMed]
    [Google Scholar]
  3. Yuan CG, Jiang Z, Xiao M, Zhou EM, Kim CJ et al. Mesorhizobium sediminum sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2016;66:4797–4802 [CrossRef][PubMed]
    [Google Scholar]
  4. Nguyen TM, Pham VH, Kim J. Mesorhizobium soli sp. nov., a novel species isolated from the rhizosphere of Robinia pseudoacacia L. in South Korea by using a modified culture method. Antonie van Leeuwenhoek 2015;108:301–310 [CrossRef][PubMed]
    [Google Scholar]
  5. Fu GY, Yu XY, Zhang CY, Zhao Z, Wu D et al. Mesorhizobium oceanicum sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2017;67:2739–2745 [CrossRef][PubMed]
    [Google Scholar]
  6. Su ZH, Zhang ML. Evolutionary history of a desert shrub Ephedra przewalskii (Ephedraceae): allopatric divergence and range shifts in northwestern China. PLoS One 2016;11:e0158284 [CrossRef][PubMed]
    [Google Scholar]
  7. Liu L, Li L, Song Z, Wang S, Zhang J et al. Parapedobacter deserti sp. nov., an endophytic bacterium isolated from Haloxylon ammodendron stems. Int J Syst Evol Microbiol 2017;67:2148–2152 [CrossRef][PubMed]
    [Google Scholar]
  8. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991
    [Google Scholar]
  9. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  10. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  11. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  12. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  13. Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A et al. BLAST: a more efficient report with usability improvements. Nucleic Acids Res 2013;41:W29–W33 [CrossRef][PubMed]
    [Google Scholar]
  14. Li B, Yang X, Tan H, Ke B, He D et al. Vibrio parahaemolyticus O4:K8 forms a potential predominant clone in southern China as detected by whole-genome sequence analysis. Int J Food Microbiol 2017;244:90–95 [CrossRef][PubMed]
    [Google Scholar]
  15. Marcos-García M, Menéndez E, Ramírez-Bahena MH, Mateos PF, Peix Á et al. Mesorhizobium helmanticense sp. nov., isolated from Lotus corniculatus nodules. Int J Syst Evol Microbiol 2017;67:2301–2305 [CrossRef][PubMed]
    [Google Scholar]
  16. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015;43:6761–6771 [CrossRef][PubMed]
    [Google Scholar]
  17. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  18. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60–73 [CrossRef][PubMed]
    [Google Scholar]
  19. Dong XZ, Cai MY. Determination of biochemical properties. In Manual for the Systematic Identification of General Bacteria Beijing: Science Press; 2001
    [Google Scholar]
  20. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  21. Choma A, Komaniecka I. Analysis of phospholipids and ornithine-containing lipids from Mesorhizobium spp. Syst Appl Microbiol 2002;25:326–331 [CrossRef][PubMed]
    [Google Scholar]
  22. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003044
Loading
/content/journal/ijsem/10.1099/ijsem.0.003044
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error