1887

Abstract

A Gram-stain-positive, aerobic, rod-shaped, endospore-forming bacterium, designated strain M4BSY-1, was originally isolated from a surface-sterilized leaf of Paeonia lactiflora Pall. in Guizhou, China. The bacterium was characterized by a polyphasic approach to determine its taxonomic position. 16S rRNA gene sequence comparison revealed that strain M4BSY-1 belongs to the genus Paenibacillus and most closely to Paenibacillus pinioli NB5 (98.31 % similarity). Neither substrate nor aerial mycelia formed, and no diffusible pigments were observed on the media tested. Strain M4BSY-1 grew in the pH range 7.0–13.0 (optimum, 7.0–8.0), at temperatures between 10–37 °C (optimum, 30 °C) and at 0–5 % (w/v) NaCl (optimum, 1–2 %). The predominant menaquinone was MK-7. The major fatty acids were anteiso-C15 : 0, C16 : 0 and iso-C16 : 0. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified unknown aminophospholipids and three unidentified phospholipids. The DNA G+C content was 48.8 mol%. According to the phylogenetic, phenotypic and chemotaxonomic evidence, strain M4BSY-1 was clearly distinguishable from other species with validly published names in the genus Paenibacillus and should therefore be classified as a novel species, and we suggest the name Paenibacillus paeoniae sp. nov. The type strain is M4BSY-1 (=KCTC 33997=CGMCC 1.13667).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003042
2018-09-25
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/11/3606.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003042&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993; 64:253–260[PubMed]
    [Google Scholar]
  2. Menéndez E, Flores-Félix JD, Mulas R, Andrés FG, Fernández-Pascual M et al. Paenibacillus tritici sp. nov., isolated from wheat roots. Int J Syst Evol Microbiol 2017; 67:2312–2316 [View Article][PubMed]
    [Google Scholar]
  3. Zhang J, Ma XT, Gao JS, Zhao JJ, Yin HQ et al. Paenibacillus oryzae sp. nov., isolated from rice roots. Int J Syst Evol Microbiol 2016; 66:5000–5004 [View Article][PubMed]
    [Google Scholar]
  4. Siddiqi MZ, Siddiqi MH, Im WT, Kim YJ, Yang DC. Paenibacillus kyungheensis sp. nov., isolated from flowers of magnolia. Int J Syst Evol Microbiol 2015; 65:3959–3964 [View Article][PubMed]
    [Google Scholar]
  5. Liu Y, Liu L, Qiu F, Schumann P, Shi Y et al. Paenibacillus hunanensis sp. nov., isolated from rice seeds. Int J Syst Evol Microbiol 2010; 60:1266–1270 [View Article][PubMed]
    [Google Scholar]
  6. Smerda J, Sedlácek I, Pácová Z, Durnová E, Smísková A et al. Paenibacillus mendelii sp. nov., from surface-sterilized seeds of Pisum sativum L. Int J Syst Evol Microbiol 2005; 55:2351–2354 [View Article][PubMed]
    [Google Scholar]
  7. Madhaiyan M, Poonguzhali S, Saravanan VS, Duraipandiyan V, Al-Dhabi NA et al. Paenibacillus polysaccharolyticus sp. nov., a xylanolytic and cellulolytic bacteria isolated from leaves of Bamboo Phyllostachys aureosulcata. Int J Syst Evol Microbiol 2017; 67:2127–2133 [View Article][PubMed]
    [Google Scholar]
  8. Qin S, Wang HB, Chen HH, Zhang YQ, Jiang CL et al. Glycomyces endophyticus sp. nov., an endophytic actinomycete isolated from the root of Carex baccans Nees. Int J Syst Evol Microbiol 2008; 58:2525–2528 [View Article][PubMed]
    [Google Scholar]
  9. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  10. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  11. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  12. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  15. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  16. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  17. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  18. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  19. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  20. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  21. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  22. Magee CM, Rodeheaver G, Edgerton MT, Edlich RF. A more reliable gram staining technic for diagnosis of surgical infections. Am J Surg 1975; 130:341–346 [View Article][PubMed]
    [Google Scholar]
  23. Cappuccino JG, Sherman N. Microbiology: A Laboratory Manual, 6th ed. San Francisco: Benjamin Cummings Pearson Education; 2002
    [Google Scholar]
  24. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article][PubMed]
    [Google Scholar]
  25. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477[PubMed]
    [Google Scholar]
  26. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  27. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  28. Guo L, Tuo L, Habden X, Zhang Y, Liu J et al. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 2015; 65:206–213 [View Article][PubMed]
    [Google Scholar]
  29. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI inc; 1990
    [Google Scholar]
  30. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997; 47:289–298 [View Article][PubMed]
    [Google Scholar]
  31. de Vos P, Ludwig WF, Schleifer KH, Whitman I. Family IV. Paenibacillaceae fam. nov. In Bergey’s Manual of Systematic Bacteriology vol. 3 2011 pp. 269
    [Google Scholar]
  32. Wang L, Baek SH, Cui Y, Lee HG, Lee ST. Paenibacillus sediminis sp. nov., a xylanolytic bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2012; 62:1284–1288 [View Article][PubMed]
    [Google Scholar]
  33. Moon J, Kim J. Isolation of Paenibacillus pinesoli sp. nov. from forest soil in Gyeonggi-Do, Korea. J Microbiol 2014; 52:273–277 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003042
Loading
/content/journal/ijsem/10.1099/ijsem.0.003042
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error