1887

Abstract

A novel actinomycete, designated strain NEAU-HRDPA2-9, was isolated from the roots of wheat (Triticumaestivum L.) and characterized using a polyphasic approach. The morphological and chemotaxonomic characteristics of the strain coincided with those of members of the genus Microbispora . The 16S rRNA gene sequence analysis showed that the isolate was most closely related to Microbispora bryophytorum NEAU-TX2-2 (98.6 %), Microbispora hainanensis DSM 45428 (98.5 %), Microbispora camponoti 2C-HV3 (98.5 %), Microbispora amethystogenes JCM 3021 (98.2 %), Microbispora siamensis NBRC 104113 (98.1 %), Microbispora corallina JCM 10267 (98.0 %) and Microbispora rosea subsp. rosea JCM 3006 (97.9 %). However, two tree-making algorithms supported the position that strain NEAU-HRDPA2-9 formed a distinct clade with M. siamensis NBRC 104113 and M. hainanensis DSM 45428. Furthermore, a combination of DNA–DNA hybridization results and some physiological and biochemical properties demonstrated that the strain could be distinguished from its closest relatives. Therefore, it is proposed that strain NEAU-HRDPA2-9 should be classified as representative of a novel species of the genus Microbispora , for which the name Microbispora triticiradicis sp. nov. is proposed. The type strain is NEAU-HRDPA2-9 (=CGMCC 4.7399=DSM 104649).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003040
2018-09-24
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/11/3600.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003040&mimeType=html&fmt=ahah

References

  1. Nonomura H, Ohara Y. Distribution of actinomycetes in soil. II. Microbispora, a new genus of the Streptomycetaceae. J Ferment Technol 1957;35:307–311
    [Google Scholar]
  2. Nonomura H, Ohara Y. Distribution of the actinomycetes in soil. IV. The isolation and classification of the genus Microbispora. J Ferment Technol 1960;38:401–405
    [Google Scholar]
  3. Miyadoh S, Amano S, Tohyama H, Shomura T. A taxonomic review of the genus Microbispora and a proposal to transfer two species to the genus Actinomadura and to combine ten species into Microbispora rosea. J Gen Microbiol 1990;136:1905–1913 [CrossRef][PubMed]
    [Google Scholar]
  4. Boondaeng A, Ishida Y, Tamura T, Tokuyama S, Kitpreechavanich V. Microbispora siamensis sp. nov., a thermotolerant actinomycete isolated from soil. Int J Syst Evol Microbiol 2009;59:3136–3139 [CrossRef][PubMed]
    [Google Scholar]
  5. Nakajima Y, Kitpreechavanich V, Suzuki K, Kudo T. Microbispora corallina sp. nov., a new species of the genus Microbispora isolated from Thai soil. Int J Syst Bacteriol 1999;49:1761–1767 [CrossRef][PubMed]
    [Google Scholar]
  6. Xu XX, Wang HL, Lin HP, Wang C, Qu Z et al. Microbispora hainanensis sp. nov., isolated from rhizosphere soil of Excoecaria agallocha in a mangrove. Int J Syst Evol Microbiol 2012;62:2430–2434 [CrossRef][PubMed]
    [Google Scholar]
  7. Li C, Zhang Y, Liu C, Wang H, Zhao J et al. Microbispora bryophytorum sp. nov., an actinomycete isolated from moss (Bryophyta). Int J Syst Evol Microbiol 2015;65:1274–1279 [CrossRef][PubMed]
    [Google Scholar]
  8. Han C, Liu C, Zhao J, Guo L, Lu C et al. Microbispora camponoti sp. nov., a novel actinomycete isolated from the cuticle of Camponotus japonicus Mayr. Antonie van Leeuwenhoek 2016;109:215–223 [CrossRef][PubMed]
    [Google Scholar]
  9. Wang X, Zhao J, Liu C, Wang J, Shen Y et al. Nonomuraea solani sp. nov., an actinomycete isolated from eggplant root (Solanum melongena L.). Int J Syst Evol Microbiol 2013;63:2418–2423 [CrossRef][PubMed]
    [Google Scholar]
  10. Cao P, Liu C, Sun P, Fu X, Wang S et al. An endophytic Streptomyces sp. strain DHV3-2 from diseased root as a potential biocontrol agent against Verticillium dahliae and growth elicitor in tomato (Solanum lycopersicum). Antonie van Leeuwenhoek 2016;109:1573–1582 [CrossRef][PubMed]
    [Google Scholar]
  11. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  12. Waksman SA. The Actinomycetes. In A Summary of Current Knowledge New York: Ronald; 1967
    [Google Scholar]
  13. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949;57:141–145[PubMed]
    [Google Scholar]
  14. Waksman SA. The Actinomycetesvol. 2 Classification, identification and descriptions of genera and species Baltimore: Williams and Wilkins; 1961
    [Google Scholar]
  15. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color-Name Charts Illustrated with Centroid Colors Published In US 1964
    [Google Scholar]
  16. Jia F, Liu C, Wang X, Zhao J, Liu Q et al. Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Antonie van Leeuwenhoek 2013;103:399–408 [CrossRef][PubMed]
    [Google Scholar]
  17. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  18. Smibert RM, Krieg NR. Phenotypic characterisation. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  19. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974;24:54–63 [CrossRef]
    [Google Scholar]
  20. Yokota A, Tamura T, Hasegawa T, Huang LH. Catenuloplanes japonicus gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 1993;43:805–812 [CrossRef]
    [Google Scholar]
  21. McKerrow J, Vagg S, Mckinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 2000;30:178–182 [CrossRef][PubMed]
    [Google Scholar]
  22. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. (editors) Actinomycete Taxonomy Special Publication, Society of Industrial Microbiologyvol. 6 1980; pp.227–291
    [Google Scholar]
  23. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  24. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp.267–284
    [Google Scholar]
  25. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989;16:176–178
    [Google Scholar]
  26. Gao R, Liu C, Zhao J, Jia F, Yu C et al. Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie van Leeuwenhoek 2014;105:307–315 [CrossRef][PubMed]
    [Google Scholar]
  27. Xiang W, Liu C, Wang X, Du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011;61:1165–1169 [CrossRef][PubMed]
    [Google Scholar]
  28. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S et al. Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 2000;50:2031–2036 [CrossRef][PubMed]
    [Google Scholar]
  29. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  30. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  31. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  33. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  34. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  35. Mandel M, Marmur J. Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 1968;12B:195–206
    [Google Scholar]
  36. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  37. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  38. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003040
Loading
/content/journal/ijsem/10.1099/ijsem.0.003040
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error