1887

Abstract

Nontuberculous mycobacteria, particularly the Mycobacterium avium complex (MAC) bacteria, are increasingly recognized as opportunistic pathogens of humans. As a result, studies on antibiotic treatment and taxonomy of the MAC are intensifying, but an updated definition of what constitutes the MAC, either for taxonomical studies or for clinical purposes, is lacking. On the basis of literature review and phylogenetic analyses, we propose to define the MAC as a grouping of slow-growing mycobacteria that show corresponding values in at least two of the following targets against either M. avium ATCC 25291 or Mycobacterium intracellulare ATCC 13950: >99.4 % sequence identity for the full 16S rRNA gene, >98.7 % for the partial (5′) 16S rRNA gene, >97.3 % for hsp65 and >94.4 % for rpoB region V. A >97.5 % value in concatenated analyses of >2500 bp that includes 16S rRNA, hsp65 and rpoB gene sequence data or ≥85 % average nucleotide identity to M. avium ATCC 25291 or M. intracellulare ATCC 13950 on basis of whole genome sequencing data is recommended. This molecular definition is based on the distances observed between the classical members of the MAC, M. avium and M. intracellulare . Applying this definition, the complex currently consists of 12 validly published species: Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium chimaera, Mycobacterium colombiense, Mycobacterium arosiense, Mycobacterium vulneris, Mycobacterium bouchedurhonense, Mycobacterium timonense, Mycobacterium marseillense, Mycobacterium yongonense, Mycobacterium paraintracellulare and Mycobacterium lepraemurium.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003026
2018-09-19
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/11/3666.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003026&mimeType=html&fmt=ahah

References

  1. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007;175:367–416 [CrossRef][PubMed]
    [Google Scholar]
  2. Benjak A, Honap TP, Avanzi C, Becerril-Villanueva E, Estrada-García I et al. Insights from the genome sequence of Mycobacterium lepraemurium: massive gene decay and reductive evolution. MBio 2017;8:e01283 [CrossRef][PubMed]
    [Google Scholar]
  3. Runyon EH. Anonymous mycobacteria in pulmonary disease. Med Clin North Am 1959;43:273–290 [CrossRef][PubMed]
    [Google Scholar]
  4. Kent PT, Kubica GP. Public Health Mycobacteriology: A Guide for the Level III Laboratory Atlanta, GA: US Department of Health and Human Services; 1985
    [Google Scholar]
  5. Wolinsky E. Nontuberculous mycobacteria and associated diseases. Am Rev Respir Dis 1979;119:107–159 [CrossRef][PubMed]
    [Google Scholar]
  6. Kubica GP, Beam RE. The arylsulfatase activity of acid-fast bacilli. II. The differentiation of Mycobacterium avium from the unclassified group III nonphoto chromogenic mycobacteria. Am Rev Respir Dis 1961;83:733–736 [CrossRef][PubMed]
    [Google Scholar]
  7. Murcia MI, Tortoli E, Menendez MC, Palenque E, Garcia MJ. Mycobacterium colombiense sp. nov., a novel member of the Mycobacterium avium complex and description of MAC-X as a new ITS genetic variant. Int J Syst Evol Microbiol 2006;56:2049–2054 [CrossRef][PubMed]
    [Google Scholar]
  8. Kim BJ, Math RK, Jeon CO, Yu HK, Park YG et al. Mycobacterium yongonense sp. nov., a slow-growing non-chromogenic species closely related to Mycobacterium intracellulare. Int J Syst Evol Microbiol 2013;63:192–199 [CrossRef][PubMed]
    [Google Scholar]
  9. Bang D, Herlin T, Stegger M, Andersen AB, Torkko P et al. Mycobacterium arosiense sp. nov., a slowly growing, scotochromogenic species causing osteomyelitis in an immunocompromised child. Int J Syst Evol Microbiol 2008;58:2398–2402 [CrossRef][PubMed]
    [Google Scholar]
  10. van Ingen J, Boeree MJ, Kösters K, Wieland A, Tortoli E et al. Proposal to elevate Mycobacterium avium complex ITS sequevar MAC-Q to Mycobacterium vulneris sp. nov. Int J Syst Evol Microbiol 2009;59:2277–2282 [CrossRef][PubMed]
    [Google Scholar]
  11. Toney NC, Toney SR, Butler WR. Utility of high-performance liquid chromatography analysis of mycolic acids and partial 16S rRNA gene sequencing for routine identification of Mycobacterium spp. in a national reference laboratory. Diagn Microbiol Infect Dis 2010;67:143–152 [CrossRef][PubMed]
    [Google Scholar]
  12. Tortoli E, Rindi L, Garcia MJ, Chiaradonna P, Dei R et al. Proposal to elevate the genetic variant MAC-A, included in the Mycobacterium avium complex, to species rank as Mycobacterium chimaera sp. nov. Int J Syst Evol Microbiol 2004;54:1277–1285 [CrossRef][PubMed]
    [Google Scholar]
  13. Buchan BW, Riebe KM, Timke M, Kostrzewa M, Ledeboer NA. Comparison of MALDI-TOF MS with HPLC and nucleic acid sequencing for the identification of Mycobacterium species in cultures using solid medium and broth. Am J Clin Pathol 2014;141:25–34 [CrossRef][PubMed]
    [Google Scholar]
  14. Boyle DP, Zembower TR, Qi C. Evaluation of Vitek MS for rapid classification of clinical isolates belonging to Mycobacterium avium complex. Diagn Microbiol Infect Dis 2015;81:41–43 [CrossRef][PubMed]
    [Google Scholar]
  15. van Ingen J, Kohl TA, Kranzer K, Hasse B, Keller PM et al. A global outbreak of severe Mycobacterium chimaera disease after cardiac surgery: a molecular epidemiological study. Lancet Infect Dis 2017;17:1033–1041 [CrossRef][PubMed]
    [Google Scholar]
  16. Pranada AB, Witt E, Bienia M, Kostrzewa M, Timke M. Accurate differentiation of Mycobacterium chimaera from Mycobacterium intracellulare by MALDI-TOF MS analysis. J Med Microbiol 2017;66:670–677 [CrossRef][PubMed]
    [Google Scholar]
  17. Alcaide F, Amlerová J, Bou G, Ceyssens PJ, Coll P et al. How to: identify non-tuberculous Mycobacterium species using MALDI-TOF mass spectrometry. Clin Microbiol Infect 2018;24:599–603 [CrossRef][PubMed]
    [Google Scholar]
  18. Ben Salah I, Cayrou C, Raoult D, Drancourt M. Mycobacterium marseillense sp. nov., Mycobacterium timonense sp. nov. and Mycobacterium bouchedurhonense sp. nov., members of the Mycobacterium avium complex. Int J Syst Evol Microbiol 2009;59:2803–2808 [CrossRef][PubMed]
    [Google Scholar]
  19. Tortoli E, Adriani B, Baruzzo S, Degl'innocenti R, Galanti I et al. Pulmonary disease due to Mycobacterium arosiense, an easily misidentified pathogenic novel mycobacterium. J Clin Microbiol 2009;47:1947–1949 [CrossRef][PubMed]
    [Google Scholar]
  20. Tortoli E, Mariottini A, Pierotti P, Simonetti TM, Rossolini GM. Mycobacterium yongonense in pulmonary disease, Italy. Emerg Infect Dis 2013;19:1902–1904 [CrossRef][PubMed]
    [Google Scholar]
  21. de Zwaan R, van Ingen J, van Soolingen D. Utility of rpoB gene sequencing for identification of nontuberculous mycobacteria in the Netherlands. J Clin Microbiol 2014;52:2544–2551 [CrossRef][PubMed]
    [Google Scholar]
  22. Tortoli E, Pecorari M, Fabio G, Messinò M, Fabio A. Commercial DNA probes for mycobacteria incorrectly identify a number of less frequently encountered species. J Clin Microbiol 2010;48:307–310 [CrossRef][PubMed]
    [Google Scholar]
  23. van Ingen J, de Zwaan R, Enaimi M, Dekhuijzen PN, Boeree MJ et al. Re-analysis of 178 previously unidentifiable Mycobacterium isolates in the Netherlands in 1999–2007. Clin Microbiol Infect 2010;16:1470–1474 [CrossRef][PubMed]
    [Google Scholar]
  24. Devulder G. A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. Int Syst Evol Microbiol 2005;55:293–302 [CrossRef]
    [Google Scholar]
  25. Ben Salah I, Adékambi T, Raoult D, Drancourt M. rpoB sequence-based identification of Mycobacterium avium complex species. Microbiology 2008;154:3715–3723 [CrossRef][PubMed]
    [Google Scholar]
  26. Tortoli E, Fedrizzi T, Meehan CJ, Trovato A, Grottola A et al. The new phylogeny of the genus Mycobacterium: the old and the news. Infect Genet Evol 2017;56:19–25 [CrossRef][PubMed]
    [Google Scholar]
  27. Frothingham R, Wilson KH. Sequence-based differentiation of strains in the Mycobacterium avium complex. J Bacteriol 1993;175:2818–2825 [CrossRef][PubMed]
    [Google Scholar]
  28. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 1989;17:7843–7853 [CrossRef][PubMed]
    [Google Scholar]
  29. Telenti A, Marchesi F, Balz M, Bally F, Böttger EC et al. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol 1993;31:175–178[PubMed]
    [Google Scholar]
  30. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  31. Clinical Laboratory Standards Institute Interpretive Criteria for Identification of Bacteria and Fungi by DNA Target Sequencing; Approved Guideline. Document MM18-A Wayne, PA, USA: CLSI; 2008
    [Google Scholar]
  32. Turenne CY, Semret M, Cousins DV, Collins DM, Behr MA. Sequencing of hsp65 distinguishes among subsets of the Mycobacterium avium complex. J Clin Microbiol 2006;44:433–440 [CrossRef][PubMed]
    [Google Scholar]
  33. de Smet KA, Brown IN, Yates M, Ivanyi J. Ribosomal internal transcribed spacer sequences are identical among Mycobacterium avium-intracellulare complex isolates from AIDS patients, but vary among isolates from elderly pulmonary disease patients. Microbiology 1995;141:2739–2747 [CrossRef][PubMed]
    [Google Scholar]
  34. Mijs W, de Haas P, Rossau R, van der Laan T, Rigouts L et al. Molecular evidence to support a proposal to reserve the designation Mycobacterium avium subsp. avium for bird-type isolates and 'M. avium subsp. hominissuis' for the human/porcine type of M. avium. Int J Syst Evol Microbiol 2002;52:1505–1518 [CrossRef][PubMed]
    [Google Scholar]
  35. Stout JE, Hopkins GW, McDonald JR, Quinn A, Hamilton CD et al. Association between 16S-23S internal transcribed spacer sequence groups of Mycobacterium avium complex and pulmonary disease. J Clin Microbiol 2008;46:2790–2793 [CrossRef][PubMed]
    [Google Scholar]
  36. van Ingen J, Lindeboom JA, Hartwig NG, de Zwaan R, Tortoli E et al. Mycobacterium mantenii sp. nov., a pathogenic, slowly growing, scotochromogenic species. Int J Syst Evol Microbiol 2009;59:2782–2787 [CrossRef][PubMed]
    [Google Scholar]
  37. Turenne CY, Tschetter L, Wolfe J, Kabani A. Necessity of quality-controlled 16S rRNA gene sequence databases: identifying nontuberculous Mycobacterium species. J Clin Microbiol 2001;39:3637–3648 [CrossRef][PubMed]
    [Google Scholar]
  38. Tortoli E. Phylogeny of the genus Mycobacterium: many doubts, few certainties. Infect Genet Evol 2012;12:827–831 [CrossRef][PubMed]
    [Google Scholar]
  39. Turenne CY, Wallace R, Behr MA. Mycobacterium avium in the postgenomic era. Clin Microbiol Rev 2007;20:205–229 [CrossRef][PubMed]
    [Google Scholar]
  40. Ichikawa K, van Ingen J, Koh WJ, Wagner D, Salfinger M et al. Genetic diversity of clinical Mycobacterium avium subsp. hominissuis and Mycobacterium intracellulare isolates causing pulmonary diseases recovered from different geographical regions. Infect Genet Evol 2015;36:250–255 [CrossRef][PubMed]
    [Google Scholar]
  41. Griffith DE, Brown-Elliott BA, Wallace RJ. Hit the road, MAC, and don't you come back no more. Am J Respir Crit Care Med 2015;191:1222–1224 [CrossRef][PubMed]
    [Google Scholar]
  42. Telenti A. More on "what's in a name … "–pragmatism in mycobacterial taxonomy. Int J Tuberc Lung Dis 1998;2:182–183[PubMed]
    [Google Scholar]
  43. Castejon M, Menéndez MC, Comas I, Vicente A, Garcia MJ. Whole-genome sequence analysis of the Mycobacterium avium complex and proposal of the transfer of Mycobacterium yongonense to Mycobacterium intracellulare subsp. yongonense subsp. nov. Int J Syst Evol Microbiol 2018;68:1998–2005 [CrossRef][PubMed]
    [Google Scholar]
  44. van Ingen J, Hoefsloot W, Buijtels P, Dekhuijzen PNR, Supply P et al. Characterization of an M. chimaera variant. J Med Microbiol 2012;61:1234–1239
    [Google Scholar]
  45. Kim BJ, Hong SH, Kook YH, Kim BJ. Molecular evidence of lateral gene transfer in rpoB gene of Mycobacterium yongonense strains via multilocus sequence analysis. PLoS One 2013;8:e51846 [CrossRef][PubMed]
    [Google Scholar]
  46. Schweickert B, Goldenberg O, Richter E, Göbel UB, Petrich A et al. Occurrence and clinical relevance of Mycobacterium chimaera sp. nov., Germany. Emerg Infect Dis 2008;14:1443–1446 [CrossRef][PubMed]
    [Google Scholar]
  47. Lee SY, Kim BJ, Kim H, Won YS, Jeon CO et al. Mycobacterium paraintracellulare sp. nov., for the genotype INT-1 of Mycobacterium intracellulare. Int J Syst Evol Microbiol 2016;66:3132–3141 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003026
Loading
/content/journal/ijsem/10.1099/ijsem.0.003026
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error