1887

Abstract

A novel, Gram-stain-positive, catalase-positive, non-spore-forming, short rod-shaped strain (VUL4_3) was isolated from rectal swabs of Old World vultures (Aegypius monachus) from the Tibet–Qinghai Plateau, China. Based on the results of biochemical tests and 16S rRNA gene sequence comparison, strain VUL4_3 was determined to be a member of the genus Actinomyces that is closely related to the type strains of Actinomyces liubingyangii (97.7 % 16S rRNA gene sequence similarity) and Actinomyces marimammalium (96.5 %). Optimal growth occurred at 37 °C, pH 6–7 and with 1 % (w/v) NaCl. The typical major cellular fatty acids of strain VUL4_3 were C18 : 1ω9c, C16 : 0 and C18 : 0. The VUL4_3 genome contained 2 207 832 bp with an average G+C content of 51.9 mol%. DNA–DNA hybridization values between strain VUL4_3 and the above two species of the genus Actinomyces showed less than 32 % DNA–DNA relatedness, supporting a novel species status of strain VUL4_3. Based on the phenotypic data and phylogenetic inference, the novel species Actinomyces tangfeifanii sp. nov. is proposed. The type strain is VUL4_3 (=CGMCC 4.7369=DSM 103436).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003013
2018-10-23
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/12/3701.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003013&mimeType=html&fmt=ahah

References

  1. Schaal KP. Genus Actinomyces. In Sneath PHA. (editor) Bergey’s Manual of Systematic Bacteriology Baltimore: Williams & Wilkins Press; 1986; pp.1383–1418
    [Google Scholar]
  2. Hyun DW, Shin NR, Kim MS, Kim PS, Kim JY et al. Actinomyces haliotis sp. nov., a bacterium isolated from the gut of an abalone, Haliotis discus hannai. Int J Syst Evol Microbiol 2014;64:456–461 [CrossRef][PubMed]
    [Google Scholar]
  3. Funke G, Englert R, Frodl R, Bernard KA, Stenger S. Actinomyces hominis sp. nov., isolated from a wound swab. Int J Syst Evol Microbiol 2010;60:1678–1681 [CrossRef][PubMed]
    [Google Scholar]
  4. Meng X, Wang Y, Lu S, Lai XH, Jin D et al. Actinomyces gaoshouyii sp. nov., isolated from plateau pika (Ochotona curzoniae). Int J Syst Evol Microbiol 2017;67:3363–3368 [CrossRef][PubMed]
    [Google Scholar]
  5. Bittar F, Keita MB, Lagier JC, Peeters M, Delaporte E et al. Gorilla gorilla gorilla gut: a potential reservoir of pathogenic bacteria as revealed using culturomics and molecular tools. Sci Rep 2014;4:7174 [CrossRef][PubMed]
    [Google Scholar]
  6. Razzauti M, Galan M, Bernard M, Maman S, Klopp C et al. A comparison between transcriptome sequencing and 16S metagenomics for detection of bacterial pathogens in wildlife. PLoS Negl Trop Dis 2015;9:e0003929 [CrossRef][PubMed]
    [Google Scholar]
  7. Drexler JF, Corman VM, Müller MA, Maganga GD, Vallo P et al. Bats host major mammalian paramyxoviruses. Nat Commun 2012;3:796 [CrossRef][PubMed]
    [Google Scholar]
  8. Veikkolainen V, Vesterinen EJ, Lilley TM, Pulliainen AT. Bats as reservoir hosts of human bacterial pathogen, Bartonella mayotimonensis. Emerg Infect Dis 2014;20:960–967 [CrossRef][PubMed]
    [Google Scholar]
  9. Rupprecht CE, Turmelle A, Kuzmin IV. A perspective on lyssavirus emergence and perpetuation. Curr Opin Virol 2011;1:662–670 [CrossRef][PubMed]
    [Google Scholar]
  10. Meng X, Lu S, Wang Y, Lai X-H, Wen Y et al. Actinomyces vulturis sp. nov., isolated from Gyps himalayensis in Qinghai Tibet Plateau China. Int J Syst Evol Microbiol 2017;67:1720–1726
    [Google Scholar]
  11. Meng X, Lu S, Lai X-H, Wang Y, Wen Y et al. Actinomyces liubingyangii sp. nov. isolated from the vulture Gypaetus barbatus in Qinghai Tibet Plateau China. Int J Syst Evol Microbiol 2017;67:1873–1879
    [Google Scholar]
  12. Reed TM, Rocke TE. The role of avian carcasses in botulism epizootics. Wildl Soc Bull 1992;20:175–182
    [Google Scholar]
  13. Parra J, Tellería JL. The increase in the Spanish population of Griffon vulture Gyps fulvus during 1989–1999: effects of food and nest site availability. Bird Conserv Int 2004;14:33–41 [CrossRef]
    [Google Scholar]
  14. Roggenbuck M, Bærholm Schnell I, Blom N, Bælum J, Bertelsen MF et al. The microbiome of new world vultures. Nat Commun 2014;5:5498 [CrossRef][PubMed]
    [Google Scholar]
  15. Meng X, Lu S, Yang J, Jin D, Wang X et al. Metataxonomics reveal vultures as a reservoir for Clostridium perfringens. Emerg Microbes Infect 2017;6:e9 [CrossRef][PubMed]
    [Google Scholar]
  16. Xu Y, Xu X, Lan R, Xiong Y, Ye C et al. An O island 172 encoded RNA helicase regulates the motility of Escherichia coli O157:H7. PLoS One 2013;8:e64211 [CrossRef][PubMed]
    [Google Scholar]
  17. MIDI Identification System Sherlock Microbial Identification System User Manual, Version 4.5 Newark, DE: MIDI Inc; 2002
    [Google Scholar]
  18. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 2011;42:989–1005 [CrossRef]
    [Google Scholar]
  19. Altenburgera P, Kämpferb P, Makristathisc A, Lubitza W, Bussea H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996;47:39–52 [CrossRef]
    [Google Scholar]
  20. Ventosa A, Marquez MC, Kocur M, Tindall BJ. Comparative study of "Micrococcus sp." strains CCM 168 and CCM 1405 and members of the genus Salinicoccus. Int J Syst Bacteriol 1993;43:245–248 [CrossRef][PubMed]
    [Google Scholar]
  21. Watanabe M, Aoyagi Y, Ohta A, Minnikin DE. Structures of phenolic glycolipids from Mycobacterium kansasii. Eur J Biochem 1997;248:93–98 [CrossRef][PubMed]
    [Google Scholar]
  22. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981;45:316[PubMed]
    [Google Scholar]
  23. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983;29:319–322 [CrossRef]
    [Google Scholar]
  24. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972;36:407–477[PubMed]
    [Google Scholar]
  25. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley and Sons; 1991; pp.125–175
    [Google Scholar]
  26. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  28. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003;52:696–704 [CrossRef][PubMed]
    [Google Scholar]
  29. Kolaczkowski B, Thornton JW. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 2004;431:980–984 [CrossRef][PubMed]
    [Google Scholar]
  30. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  31. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  32. McCarthy A. Third generation DNA sequencing: pacific biosciences' single molecule real time technology. Chem Biol 2010;17:675–676 [CrossRef][PubMed]
    [Google Scholar]
  33. Berlin K, Koren S, Chin CS, Drake JP, Landolin JM et al. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 2015;33:623–630 [CrossRef][PubMed]
    [Google Scholar]
  34. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001;29:2607–2618 [CrossRef][PubMed]
    [Google Scholar]
  35. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  36. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  37. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014;64:352–356 [CrossRef][PubMed]
    [Google Scholar]
  38. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  39. Henssge U, Do T, Radford DR, Gilbert SC, Clark D et al. Emended description of Actinomyces naeslundii and descriptions of Actinomyces oris sp. nov. and Actinomyces johnsonii sp. nov., previously identified as Actinomyces naeslundii genospecies 1, 2 and WVA 963. Int J Syst Evol Microbiol 2009;59:509–516 [CrossRef][PubMed]
    [Google Scholar]
  40. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012;28:3150–3152 [CrossRef][PubMed]
    [Google Scholar]
  41. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013;30:772–780 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003013
Loading
/content/journal/ijsem/10.1099/ijsem.0.003013
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error