1887

Abstract

A Gram-stain-negative, strictly aerobic, short-rod-shaped bacterium, motile by a single polar flagellum, designated OUC007, was isolated from seawater at a depth of 1000 m in the Mariana Trench. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain OUC007 formed a lineage within the family Salinisphaeraceae that was distinct from the most closely related genera Oceanococcus and Salinisphaera , with 16S rRNA gene sequences similarities ranging from 89.3 to 90.8 %, respectively. Strain OUC007 grew with 0–7 % (w/v) NaCl (optimum, 2–3 %), at 10–45 °C (37 °C) and at pH 7.0–9.0 (7.0–8.0). The major respiratory quinone was ubiquinone-8 (Q-8). The polar lipids of strain OUC007 comprised one phosphatidylethanolamine and three unidentified polar lipids. The predominant fatty acid (more than 10 % of total fatty acids) was summed feature 8 (C18 : 1ω7c or/and C18 : 1ω6c). The DNA G+C content of strain OUC007 was 63.1 mol%. On the basis of polyphasic taxonomic analysis, the strain OUC007 is considered to represent a novel species in a new genus of the family Salinisphaeraceae , for which the name Abyssibacter profundi gen. nov., sp. nov. is proposed. The type strain is OUC007 (=KCTC 52933=MCCC 1K03450).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002999
2018-09-11
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/11/3424.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002999&mimeType=html&fmt=ahah

References

  1. Naushad S, Adeolu M, Wong S, Sohail M, Schellhorn HE et al. A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov. and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives. Antonie van Leeuwenhoek 2015; 107:467–485 [View Article][PubMed]
    [Google Scholar]
  2. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2015; 65:1105–1111 [View Article]
    [Google Scholar]
  3. Antunes A, Eder W, Fareleira P, Santos H, Huber R. Salinisphaera shabanensis gen. nov., sp. nov., a novel, moderately halophilic bacterium from the brine-seawater interface of the Shaban Deep, Red Sea. Extremophiles 2003; 7:29–34 [View Article][PubMed]
    [Google Scholar]
  4. Crespo-Medina M, Chatziefthimiou A, Cruz-Matos R, Pérez-Rodríguez I, Barkay T et al. Salinisphaera hydrothermalis sp. nov., a mesophilic, halotolerant, facultatively autotrophic, thiosulfate-oxidizing Gammaproteobacterium from deep-sea hydrothermal vents, and emended description of the genus Salinisphaera. Int J Syst Evol Microbiol 2009; 59:1497–1503 [View Article][PubMed]
    [Google Scholar]
  5. Bae GD, Hwang CY, Kim HM, Cho BC. Salinisphaera dokdonensis sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 2010; 60:680–685 [View Article][PubMed]
    [Google Scholar]
  6. Zhang YJ, Tang SK, Shi R, Klenk HP, Chen C et al. Salinisphaera halophila sp. nov., a moderately halophilic bacterium isolated from brine of a salt well. Int J Syst Evol Microbiol 2012; 62:2174–2179 [View Article][PubMed]
    [Google Scholar]
  7. Park SJ, Cha IT, Kim SJ, Shin KS, Hong Y et al. Salinisphaera orenii sp. nov., isolated from a solar saltern. Int J Syst Evol Microbiol 2012; 62:1877–1883 [View Article][PubMed]
    [Google Scholar]
  8. Shimane Y, Tsuruwaka Y, Miyazaki M, Mori K, Minegishi H et al. Salinisphaera japonica sp. nov., a moderately halophilic bacterium isolated from the surface of a deep-sea fish, Malacocottus gibber, and emended description of the genus Salinisphaera. Int J Syst Evol Microbiol 2013; 63:2180–2185 [View Article][PubMed]
    [Google Scholar]
  9. Li G, Lai Q, Liu X, Sun F, Du Y et al. Maricoccus atlantica gen. nov. sp. nov., isolated from deep sea sediment of the Atlantic Ocean. Antonie van Leeuwenhoek 2013; 104:1073–1081 [View Article][PubMed]
    [Google Scholar]
  10. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2014; 64:1455–1458 [View Article]
    [Google Scholar]
  11. Ausubel F, Brent R, Kingston R, Moore D, Seidman J et al. Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology, 3rd ed. New York: Wiley; 1995
    [Google Scholar]
  12. Zhang Z, Yu T, Xu T, Zhang XH. Aquimarina pacifica sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2014; 64:1991–1997 [View Article][PubMed]
    [Google Scholar]
  13. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  14. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  17. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  18. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  19. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  20. Beveridge TJ, Lawrence JR, Murray RG. Sampling and staining for light microscopy. In Reddy CA, Beveridge TJ, Breznak TA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007 pp. 19–33
    [Google Scholar]
  21. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  22. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007 pp. 330–393
    [Google Scholar]
  23. Hsu SC, Lockwood JL. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl Microbiol 1975; 29:422–426[PubMed]
    [Google Scholar]
  24. Yoon JH, Lee KC, Kho YH, Kang KH, Kim CJ et al. Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2002; 52:123–130 [View Article][PubMed]
    [Google Scholar]
  25. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  26. Xie CH, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003; 49:345–349 [View Article][PubMed]
    [Google Scholar]
  27. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  28. Collins MD, Shah HN. Fatty acid, menaquinone and polar lipid composition of Rothia dentocariosa. Arch Microbiol 1984; 137:247–249 [View Article]
    [Google Scholar]
  29. Komagata K, Suzuki KI. 4 Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:161–207
    [Google Scholar]
  30. Moore ERB, Arnscheidt A, Krüger A, Strömpl C, Mau M et al. Simplified protocols for the preparation of genomic DNA from bacterial cultures. Mol Microb Ecol Man 1999; 1:1–15
    [Google Scholar]
  31. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article][PubMed]
    [Google Scholar]
  32. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 2007; 23:673–679 [View Article][PubMed]
    [Google Scholar]
  33. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  34. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964 [View Article][PubMed]
    [Google Scholar]
  35. Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL et al. Rfam: updates to the RNA families database. Nucleic Acids Res 2009; 37:D136–D140 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002999
Loading
/content/journal/ijsem/10.1099/ijsem.0.002999
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error