1887

Abstract

We here describe a novel species in the Staphylococcus intermedius Group (SIG) which is phenotypically similar to Staphylococcus pseudintermedius but is genomically distinct from it and other SIG members, with an average nucleotide identity of 90.2 % with its closest relative S. intermedius . The description of Staphylococcus cornubiensis sp. nov. is based on strain NW1 (=NCTC 13950=DSM 105366) isolated from a human skin infection in Cornwall, UK. Although pathogenic, NW1 carries no known virulence genes or mobilizable antibiotic resistance genes and further studies are required to assess the prevalence of this species in humans as well as its potential presence in companion animals.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002992
2018-09-11
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/11/3404.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002992&mimeType=html&fmt=ahah

References

  1. Hajek V. Staphylococcus intermedius, a new species isolated from animals. Int J Syst Bacteriol 1976;26:401–408 [CrossRef]
    [Google Scholar]
  2. Devriese LA, Vancanneyt M, Baele M, Vaneechoutte M, de Graef E et al. Staphylococcus pseudintermedius sp. nov., a coagulase-positive species from animals. Int J Syst Evol Microbiol 2005;55:1569–1573 [CrossRef][PubMed]
    [Google Scholar]
  3. Varaldo PE, Kilpper-Balz R, Biavasco F, Satta G, Schleifer KH. Staphylococcus delphini sp. nov., a coagulase-positive species isolated from dolphins. Int J Syst Bacteriol 1988;38:436–439 [CrossRef]
    [Google Scholar]
  4. Bannoehr J, Ben Zakour NL, Waller AS, Guardabassi L, Thoday KL et al. Population genetic structure of the Staphylococcus intermedius group: insights into agr diversification and the emergence of methicillin-resistant strains. J Bacteriol 2007;189:8685–8692 [CrossRef][PubMed]
    [Google Scholar]
  5. Devriese LA, Hermans K, Baele M, Haesebrouck F. Staphylococcus pseudintermedius versus Staphylococcus intermedius. Vet Microbiol 2009;133:206–207 [CrossRef][PubMed]
    [Google Scholar]
  6. Bannoehr J, Guardabassi L. Staphylococcus pseudintermedius in the dog: taxonomy, diagnostics, ecology, epidemiology and pathogenicity. Vet Dermatol 2012;23:253–266 [CrossRef][PubMed]
    [Google Scholar]
  7. Van Duijkeren E, Kamphuis M, Van der Mije IC, Laarhoven LM, Duim B et al. Transmission of methicillin-resistant Staphylococcus pseudintermedius between infected dogs and cats and contact pets, humans and the environment in households and veterinary clinics. Vet Microbiol 2011;150:338–343 [CrossRef][PubMed]
    [Google Scholar]
  8. Somayaji R, Priyantha MA, Rubin JE, Church D. Human infections due to Staphylococcus pseudintermedius, an emerging zoonosis of canine origin: report of 24 cases. Diagn Microbiol Infect Dis 2016;85:471–476 [CrossRef][PubMed]
    [Google Scholar]
  9. Lee J, Murray A, Bendall R, Gaze W, Zhang L et al. Improved detection of Staphylococcus intermedius group in a routine diagnostic laboratory. J Clin Microbiol 2015;53:961–963 [CrossRef][PubMed]
    [Google Scholar]
  10. Slettemeås JS, Mikalsen J, Sunde M. Further diversity of the Staphylococcus intermedius group and heterogeneity in the MboI restriction site used for Staphylococcus pseudintermedius species identification. J Vet Diagn Invest 2010;22:756–759 [CrossRef][PubMed]
    [Google Scholar]
  11. Zakour NLB, Beatson SA, van den Broek AH, Thoday KL, Fitzgerald JR. Comparative genomics of the Staphylococcus intermedius group of animal pathogens. Front Cell Infect Microbiol 2012;2:44 [CrossRef][PubMed]
    [Google Scholar]
  12. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015;31:3691–3693 [CrossRef][PubMed]
    [Google Scholar]
  13. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom 2016;2:e000056 [CrossRef][PubMed]
    [Google Scholar]
  14. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  15. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  16. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom 2017;3:e000131 [CrossRef][PubMed]
    [Google Scholar]
  17. Chen L, Xiong Z, Sun L, Yang J, Jin Q. VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res 2012;40:D641–D645 [CrossRef][PubMed]
    [Google Scholar]
  18. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 2014;52:1501–1510 [CrossRef][PubMed]
    [Google Scholar]
  19. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012;67:2640–2644 [CrossRef][PubMed]
    [Google Scholar]
  20. Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007;35:W52–W57 [CrossRef][PubMed]
    [Google Scholar]
  21. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 2015;13:722–736 [CrossRef][PubMed]
    [Google Scholar]
  22. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016;44:W16–W21 [CrossRef][PubMed]
    [Google Scholar]
  23. Dmitrenko OA, Balbutskaya AA, Skvortsov VN. Ecological features, pathogenic properties, and role of Staphylococcus intermedius group representatives in animal and human infectious pathology. Mol Gen Microbiol Virol 2016;31:117–124 [CrossRef]
    [Google Scholar]
  24. Igimi S, Takahashi E, Mitsuoka T. Staphylococcus schleiferi subsp. coagulans subsp. nov., isolated from the external auditory meatus of dogs with external ear otitis. Int J Syst Bacteriol 1990;40:409–411 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002992
Loading
/content/journal/ijsem/10.1099/ijsem.0.002992
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error