1887

Abstract

Four yeast strains were isolated from rotting wood samples collected in the Baotianman Nature Reserve in Henan Province, Central China. On the basis of sequence analysis of the D1/D2 domains of the large subunit rRNA gene and the internal transcribed spacer regions, they were suggested to be two novel species of the genus Pichia. Pichia nanzhaoensis sp. nov. produces one to four spherical ascospores per ascus, and is most closely related to Candida pseudolambica. Pichia paraexigua f.a., sp. nov. is a sister taxa to Pichia exigua, but the formation of ascospores was not observed on various sporulation media. P. nanzhaoensis sp. nov. can weakly assimilate inulin, whereas P. paraexigua sp. nov. can weakly assimilate d-glucosamine. The type strain of Pichia nanzhaoensis is NYNU 178136 (=CICC 33279=CBS 15346) and the type strain of Pichia paraexigua is NYNU 178135 (=CICC 33278=CBS 15237).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002989
2018-08-28
2024-11-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/10/3311.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002989&mimeType=html&fmt=ahah

References

  1. Kurtzman CP. Pichia E.C. Hansen emend. Kurtzman. In Kurtzman CP, Fell JW. (editors) The Yeasts, A Taxonomic Study, 4th ed. Amsterdam: Elsevier; 1998 pp. 273–352
    [Google Scholar]
  2. Kurtzman CP, Robnett CJ, Basehoar-Powers E. Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov. FEMS Yeast Res 2008; 8:939–954 [View Article][PubMed]
    [Google Scholar]
  3. Kobayashi R, Kanti A, Kawasaki H. Pichia chibodasensis sp. nov., isolated in Indonesia. Int J Syst Evol Microbiol 2017; 67:1024–1027 [View Article][PubMed]
    [Google Scholar]
  4. Ren YC, Liu ST, Li Y, Hui FL. Pichia dushanensis sp. nov. and Hyphopichia paragotoi sp. nov., two sexual yeast species associated with insects and rotten wood. Int J Syst Evol Microbiol 2015; 65:2875–2881 [View Article][PubMed]
    [Google Scholar]
  5. Sipiczki M. Pichia bruneiensis sp. nov., a biofilm-producing dimorphic yeast species isolated from flowers in Borneo. Int J Syst Evol Microbiol 2012; 62:3099–3104 [View Article][PubMed]
    [Google Scholar]
  6. Ninomiya S, Mikata K, Nakagiri A, Nakase T, Kawasaki H. Pichia porticicola sp. nov., a novel ascomycetous yeast related to Pichia acaciae isolated from galleries of ambrosia beetles in Japan. J Gen Appl Microbiol 2010; 56:281–286 [View Article][PubMed]
    [Google Scholar]
  7. Ganter PF, Cardinali G, Boundy-Mills K. Pichia insulana sp. nov., a novel cactophilic yeast from the Caribbean. Int J Syst Evol Microbiol 2010; 60:1001–1007 [View Article][PubMed]
    [Google Scholar]
  8. Wang Y, Ren YC, Zhang ZT, Wu FH, Ke T et al. Candida funiuensi sp. nov., a cellobiose-fermenting yeast species isolated from rotten wood. Int J Syst Evol Microbiol 2015; 65:1755–1758 [View Article][PubMed]
    [Google Scholar]
  9. Zheng J, Lu YF, Liu XJ, Hui FL. Cyberlindnera xishuangbannaensis f.a., sp. nov., a yeast isolated from rotting wood. Int J Syst Evol Microbiol 2017; 67:5051–5055 [View Article][PubMed]
    [Google Scholar]
  10. Zheng J, Liu KF, Liu XJ, Zhang L, Hui FL. Deakozyma yunnanensis sp. nov., a novel yeast species isolated from rotten wood. Int J Syst Evol Microbiol 2017; 67:2436–2439 [View Article][PubMed]
    [Google Scholar]
  11. Gao WL, Liu TT, Zheng J, Hui FL. Kodamaea neixiangensis f.a., sp. nov. and Kodamaea jinghongensis f.a., sp. nov., two yeast species isolated from rotting wood. Int J Syst Evol Microbiol 2017; 67:3358–3362 [View Article][PubMed]
    [Google Scholar]
  12. Hui FL, Chen L, Li ZH, Niu QH, Ke T. Metschnikowia henanensis sp. nov., a new anamorphic yeast species isolated from rotten wood in China. Antonie van Leeuwenhoek 2013; 103:899–904 [View Article][PubMed]
    [Google Scholar]
  13. Lu YF, Wang M, Zheng J, Hui FL. Ogataea neixiangensis sp. nov. and Ogataea paraovalis f.a., sp. nov., two methanol-assimilating yeast species isolated from rotting wood. Int J Syst Evol Microbiol 2017; 67:3038–3042 [View Article][PubMed]
    [Google Scholar]
  14. Kurtzman CP, Fell JW, Boekhout T, Robert V. Methods for isolation, phenotypic characterization and maintenance of yeasts. In Kurtzman CP, Fell JW, Boekhout T. (editors) The Yeasts – A Taxonomic Study, 5th ed. vol. 1 Amsterdam: Elsevier; 2011 pp. 87–110
    [Google Scholar]
  15. Kurtzman CP, Robnett CJ. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 1998; 73:331–371 [View Article][PubMed]
    [Google Scholar]
  16. White TJ, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA, Gelfand DH, Sninsky JJ, White TJ. (editors) PCR Protocols: a Guide to Methods and Applications New York: Academic Press; 1990 pp. 315–322
    [Google Scholar]
  17. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  18. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  19. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  22. Lachance MA, Boekhout T, Scorzetti G, Fell JW, Kurtzman CP et al. Candida Berkhout (1923). In Kurtzman CP, Fell JW, Boekhout T. (editors) The Yeasts – A Taxonomic Study, 5th ed. vol. 2 Amsterdam: Elsevier; 2011 pp. 987–1278
    [Google Scholar]
  23. Vu D, Groenewald M, Szöke S, Cardinali G, Eberhardt U et al. DNA barcoding analysis of more than 9000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation. Stud Mycol 2016; 85:91–105 [View Article][PubMed]
    [Google Scholar]
  24. Kiss L. Limits of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences as species barcodes for Fungi. Proc Natl Acad Sci USA 2012; 109:E1811 [View Article][PubMed]
    [Google Scholar]
  25. Kurtzman CP. Pichia E.C. Hansen (1904). In Kurtzman CP, Fell JW, Boekhout T. (editors) The Yeasts – A Taxonomic Study, 5th ed. vol. 2 Amsterdam: Elsevier; 2011 pp. 685–707
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.002989
Loading
/content/journal/ijsem/10.1099/ijsem.0.002989
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error