1887

Abstract

A yellow-pigmented, Gram-staining-negative, aerobic, non-motile and rod-shaped bacterium, designated strain F30, was isolated from fresh water of a diseased farmed Murray cod with a profound ulceration pond in Zhejiang province, PR China. Growth was observed at NaCl concentrations of 0.5–3.5 % (w/v) (optimum, 1.5–2.0 %), temperatures of 10–35 °C (optimum, 28 °C) and pH 5.0–9.0 (optimum, 6.5). Phylogenetic analysis based on 16S rRNA gene sequences indicated that F30 represented a member of the genus Chryseobacterium , showing the highest similarity to Chryseobacterium jejuense DSM 19299 (99.0 %) and Chryseobacterium nakagawai NCTC 13529 (99.0 %), and less than 98.7 % similarity to other species of the genus Chryseobacterium with validly published names. The average nucleotide identity and in silico DNA–DNA hybridization values between F30 and the reference strains were 78.4–90.5 % and 2.6–42.5 %, respectively. The results of chemotaxonomic analysis indicated that the fatty acids, as well as the polar lipid profiles of F30 were similar to those of species of the genus Chryseobacterium , and the sole respiratory quinone was MK-6. On the basis of its phylogenetic, chemotaxonomic and phenotypic data, strain F30 represents a novel species, for which the name Chryseobacterium aurantiacum sp. nov. is proposed. The type strain is F30 (=KCTC 62135=MCCC 1K03457).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002987
2018-10-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/11/3397.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002987&mimeType=html&fmt=ahah

References

  1. Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B. New perspectives in the classification of the Flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 1994;44:827–831 [CrossRef]
    [Google Scholar]
  2. Kämpfer P, Dreyer U, Neef A, Dott W, Busse HJ. Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 2003;53:93–97 [CrossRef][PubMed]
    [Google Scholar]
  3. Hugo CJ, Segers P, Hoste B, Vancanneyt M, Kersters K. Chryseobacterium joostei sp. nov., isolated from the dairy environment. Int J Syst Evol Microbiol 2003;53:771–777 [CrossRef][PubMed]
    [Google Scholar]
  4. Herzog P, Winkler I, Wolking D, Kämpfer P, Lipski A. Chryseobacterium ureilyticum sp. nov., Chryseobacterium gambrini sp. nov., Chryseobacterium pallidum sp. nov. and Chryseobacterium molle sp. nov., isolated from beer-bottling plants. Int J Syst Evol Microbiol 2008;58:26–33 [CrossRef][PubMed]
    [Google Scholar]
  5. Hoang VA, Kim YJ, Nguyen NL, Yang DC. Chryseobacterium yeoncheonense sp. nov., with ginsenoside converting activity isolated from soil of a ginseng field. Arch Microbiol 2013;195:463–471 [CrossRef][PubMed]
    [Google Scholar]
  6. Chaudhary DK, Kim J. Chryseobacterium nepalense sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2017;67:646–652 [CrossRef]
    [Google Scholar]
  7. Kämpfer P, Poppel MT, Wilharm G, Busse HJ, McInroy JA et al. Chryseobacterium gallinarum sp. nov., isolated from a chicken, and Chryseobacterium contaminans sp. nov., isolated as a contaminant from a rhizosphere sample. Int J Syst Evol Microbiol 2014;64:1419–1427 [CrossRef][PubMed]
    [Google Scholar]
  8. Lin SY, Hameed A, Liu YC, Hsu YH, Hsieh YT et al. Chryseobacterium endophyticum sp. nov., isolated from a maize leaf. Int J Syst Evol Microbiol 2017;67:570–575 [CrossRef][PubMed]
    [Google Scholar]
  9. Jeong JJ, Lee DW, Park B, Sang MK, Choi IG et al. Chryseobacterium cucumeris sp. nov., an endophyte isolated from cucumber (Cucumis sativus L.) root, and emended description of Chryseobacterium arthrosphaerae. Int J Syst Evol Microbiol 2017;67:610–616 [CrossRef][PubMed]
    [Google Scholar]
  10. Kämpfer P, Rekha PD, Schumann P, Arun AB, Young CC et al. Microbacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems. Int J Syst Evol Microbiol 2011;61:1334–1337 [CrossRef][PubMed]
    [Google Scholar]
  11. Zhao Y, Wang Y, Li DH, Deng Y, Yang H. Chryseobacterium reticulitermitis sp. nov., isolated from the gut of Reticulitermes aculabialis. Int J Syst Evol Microbiol 2017;67:1698–1702 [CrossRef][PubMed]
    [Google Scholar]
  12. Charimba G, Jooste P, Albertyn J, Hugo C. Chryseobacterium carnipullorum sp. nov., isolated from raw chicken. Int J Syst Evol Microbiol 2013;63:3243–3249 [CrossRef][PubMed]
    [Google Scholar]
  13. Divyasree B, Suresh G, Sasikala C, Ramana CV. Chryseobacterium salipaludis sp. nov., isolated at a wild ass sanctuary. Int J Syst Evol Microbiol 2018;68:542–546 [CrossRef][PubMed]
    [Google Scholar]
  14. Zhao Z, Tu YQ, Shen X, Han SB, Zhang CY et al. Chryseobacterium lineare sp. nov., isolated from a limpid stream. Int J Syst Evol Microbiol 2017;67:800–805 [CrossRef][PubMed]
    [Google Scholar]
  15. Park SJ, Choi JH, Cha CJ. Chryseobacterium rigui sp. nov., isolated from an estuarine wetland. Int J Syst Evol Microbiol 2013;63:1062–1067 [CrossRef][PubMed]
    [Google Scholar]
  16. Pal M, Kumari M, Kiran S, Salwan R, Mayilraj S et al. Chryseobacterium glaciei sp. nov., isolated from the surface of a glacier in the Indian trans-Himalayas. Int J Syst Evol Microbiol 2018;68:865–870 [CrossRef][PubMed]
    [Google Scholar]
  17. Kirk KE, Hoffman JA, Smith KA, Strahan BL, Failor KC et al. Chryseobacterium angstadtii sp. nov., isolated from a newt tank. Int J Syst Evol Microbiol 2013;63:4777–4783 [CrossRef][PubMed]
    [Google Scholar]
  18. Hantsis-Zacharov E, Senderovich Y, Halpern M. Chryseobacterium bovis sp. nov., isolated from raw cow's milk. Int J Syst Evol Microbiol 2008;58:1024–1028 [CrossRef][PubMed]
    [Google Scholar]
  19. Lin SY, Hameed A, Wen CZ, Liu YC, Shen FT et al. Chryseobacterium echinoideorum sp. nov., isolated from sea urchins (Tripneustes gratilla). Int J Syst Evol Microbiol 2015;65:3985–3990 [CrossRef][PubMed]
    [Google Scholar]
  20. Weon HY, Kim BY, Yoo SH, Kwon SW, Stackebrandt E et al. Chryseobacterium soli sp. nov. and Chryseobacterium jejuense sp. nov., isolated from soil samples from Jeju, Korea. Int J Syst Evol Microbiol 2008;58:470–473 [CrossRef][PubMed]
    [Google Scholar]
  21. Wu YF, Wu QL, Liu SJ. Chryseobacterium taihuense sp. nov., isolated from a eutrophic lake, and emended descriptions of the genus Chryseobacterium, Chryseobacterium taiwanense, Chryseobacterium jejuense and Chryseobacterium indoltheticum. Int J Syst Evol Microbiol 2013;63:913–919 [CrossRef][PubMed]
    [Google Scholar]
  22. Kim T, Kim M, Kang O, Jiang F, Chang X et al. Chryseobacterium frigidum sp. nov., isolated from high-Arctic tundra soil, and emended descriptions of Chryseobacterium bernardetii and Chryseobacterium taklimakanense. Int J Syst Evol Microbiol 2016;66:609–615 [CrossRef][PubMed]
    [Google Scholar]
  23. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  24. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  25. Chaudhary DK, Kim J. Chryseobacterium nepalense sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2017;67:646–652 [CrossRef][PubMed]
    [Google Scholar]
  26. Liu Y, Rao Q, Tu J, Zhang J, Huang M et al. Acinetobacter piscicola sp. nov., isolated from diseased farmed Murray cod (Maccullochella peelii peelii). Int J Syst Evol Microbiol 2018;68:905–910 [CrossRef][PubMed]
    [Google Scholar]
  27. Komagata K, Suzuki KI. 4 Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207
    [Google Scholar]
  28. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  29. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ et al. ABySS: a parallel assembler for short read sequence data. Genome Res 2009;19:1117–1123 [CrossRef][PubMed]
    [Google Scholar]
  30. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25:1043–1055 [CrossRef][PubMed]
    [Google Scholar]
  31. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  32. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  33. Stackebrandt E. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;6:152–155
    [Google Scholar]
  34. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  35. Graham PH, Sadowsky MJ, Keyser HH, Barnet YM, Bradley RS et al. Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int J Syst Bacteriol 1991;41:582–587 [CrossRef]
    [Google Scholar]
  36. Coram NJ, Rawlings DE. Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40 degrees C. Appl Environ Microbiol 2002;68:838–845 [CrossRef][PubMed]
    [Google Scholar]
  37. Tønjum T, Welty DB, Jantzen E, Small PL. Differentiation of Mycobacterium ulcerans, M. marinum, and M. haemophilum: mapping of their relationships to M. tuberculosis by fatty acid profile analysis, DNA–DNA hybridization, and 16S rRNA gene sequence analysis. J Clin Microbiol 1998;36:918–925[PubMed]
    [Google Scholar]
  38. Holmes B, Steigerwalt AG, Nicholson AC. DNA-DNA hybridization study of strains of Chryseobacterium, Elizabethkingia and Empedobacter and of other usually indole-producing non-fermenters of CDC groups IIc, IIe, IIh and IIi, mostly from human clinical sources, and proposals of Chryseobacterium bernardetii sp. nov., Chryseobacterium carnis sp. nov., Chryseobacterium lactis sp. nov., Chryseobacterium nakagawai sp. nov. and Chryseobacterium taklimakanense comb. nov. Int J Syst Evol Microbiol 2013;63:4639–4662 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002987
Loading
/content/journal/ijsem/10.1099/ijsem.0.002987
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error