1887

Abstract

A Gram-reaction-positive, catalase-positive, non-spore-forming and short rod- or oval-shaped bacterial strain, designated D6, was isolated from farmland soil in Xuancheng, Anhui Province, China. Growth occurred at 4–37 °C (optimum, 30 °C), at pH 6.5–8.5 (optimum, 7.0) and with 0–7 % (w/v) NaCl (optimum, 0.5 % NaCl). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain D6 was most closely related to Aestuariimicrobium kwangyangense DSM 21549 (98.47 %), followed by Tessaracoccus rhinocerotis YIM 101269 (94.46 %). Strain D6 had a cell-wall peptidoglycan based on ll-diaminopimelic acid. MK-9(H4) was the predominant menaquinone. The major fatty acids of strain D6 were anteiso-C15 : 0, iso-C15 : 0 and summed feature 4 (iso-C17 : 1 I and/or anteiso-C17 : 1 B). The major polar lipids were a lipid, glycolipid and phospholipid. The DNA G+C content was 69.2 mol% and strain D6 showed low DNA–DNA relatedness to A. kwangyangense DSM 21549 (36.45±0.42 %). Based on these genotypic and phenotypic data, strain D6 represents a novel species in the genus Aestuariimicrobium , for which the name Aestuariimicrobium soli sp. nov. is proposed. The type strain is D6 (=KCTC 39995=DSM 105824). An emended description of the genus Aestuariimicrobium is presented.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002986
2018-08-24
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/10/3296.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002986&mimeType=html&fmt=ahah

References

  1. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997;47:479–491 [CrossRef]
    [Google Scholar]
  2. Stackebrandt E, Schaal KP. The family Propionibacteriaceae: the genera Friedmanniella, Luteococcus, Microlunatus, Micropruina, Propioniferax, Propionimicrobium and Tessarococcus. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors) The Prokaryotes: Volume 3: Archaea Bacteria: Firmicutes, Actinomycetes New York, NY: Springer New York; 2006; pp.383–399
    [Google Scholar]
  3. Orla-Jensen S. Die hauptlinien des natürlichen bakteriensystems. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 1909;22:305–346
    [Google Scholar]
  4. Tamura T, Takeuchi M, Yokota A. Luteococcus japonicus gen. nov., sp. nov., a new gram-positive coccus with LL-diaminopimelic acid in the cell wall. Int J Syst Bacteriol 1994;44:348–356 [CrossRef][PubMed]
    [Google Scholar]
  5. Nakamura K, Hiraishi A, Yoshimi Y, Kawaharasaki M, Masuda K et al. Microlunatus phosphovorus gen. nov., sp. nov., a new gram-positive polyphosphate-accumulating bacterium isolated from activated sludge. Int J Syst Bacteriol 1995;45:17–22 [CrossRef][PubMed]
    [Google Scholar]
  6. Yokota A, Tamura T, Takeuchi M, Weiss N, Stackebrandt E. Transfer of Propionibacterium innocuum Pitcher and Collins 1991 to Propioniferax gen. nov. as Propioniferax innocua comb. nov. Int J Syst Bacteriol 1994;44:579–582 [CrossRef][PubMed]
    [Google Scholar]
  7. Schumann P, Prauser H, Rainey FA, Stackebrandt E, Hirsch P. Friedmanniella antarctica gen. nov., sp. nov., an LL-diaminopimelic acid-containing actinomycete from Antarctic sandstone. Int J Syst Bacteriol 1997;47:278–283 [CrossRef][PubMed]
    [Google Scholar]
  8. Maszenan AM, Seviour RJ, Patel BK, Schumann P, Rees GN. Tessaracoccus bendigoensis gen. nov., sp. nov., a gram-positive coccus occurring in regular packages or tetrads, isolated from activated sludge biomass. Int J Syst Bacteriol 1999;49:459–468 [CrossRef][PubMed]
    [Google Scholar]
  9. Shintani T, Liu WT, Hanada S, Kamagata Y, Miyaoka S et al. Micropruina glycogenica gen. nov., sp. nov., a new Gram-positive glycogen-accumulating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 2000;50:201–207 [CrossRef][PubMed]
    [Google Scholar]
  10. Stackebrandt E, Schumann P, Schaal KP, Weiss N. Propionimicrobium gen. nov., a new genus to accommodate Propionibacterium lymphophilum (Torrey 1916) Johnson and Cummins 1972, 1057AL as Propionimicrobium lymphophilum comb. nov. Int J Syst Evol Microbiol 2002;52:1925–1927 [CrossRef][PubMed]
    [Google Scholar]
  11. Jung SY, Kim HS, Song JJ, Lee SG, Oh TK et al. Aestuariimicrobium kwangyangense gen. nov., sp. nov., an LL-diaminopimelic acid-containing bacterium isolated from tidal flat sediment. Int J Syst Evol Microbiol 2007;57:2114–2118 [CrossRef][PubMed]
    [Google Scholar]
  12. Busse HJ, Schumann P. Polyamine profiles within genera of the class Actinobacteria with LL-diaminopimelic acid in the peptidoglycan. Int J Syst Bacteriol 1999;49:179–184 [CrossRef][PubMed]
    [Google Scholar]
  13. Stackebrandt E, Cummins CS, Johnson JL. Family Propionibacteriaceae: the genus Propionibacterium. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors) The Prokaryotes: Volume 3: Archaea Bacteria: Firmicutes, Actinomycetes New York, NY: Springer New York; 2006; pp.400–418
    [Google Scholar]
  14. Beveridge TJ, Lawrence JR, Murray RGE. Sampling and staining for light microscopy. In Methods for General and Molecular Microbiology, 3rd ed. Washington: American Society of Microbiology; 2007
    [Google Scholar]
  15. Cowan S, Steel K. Medical technology. (Book reviews: manual for the identification of medical bacteria). Science 1965;149:852
    [Google Scholar]
  16. Reichenbach H. The order Cytophagales. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH et al. (editors) The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications New York, NY: Springer New York; 1992; pp.3631–3675
    [Google Scholar]
  17. Yoon J-H, Kim H, Kim S-B, Kim H-J, Kim WY et al. Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 1996;46:502–505 [CrossRef]
    [Google Scholar]
  18. Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC et al. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 1998;64:795–799[PubMed]
    [Google Scholar]
  19. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  21. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  23. Komagata K, Suzuki KI. 4 Lipid and cell-wall analysis in bacterial systematics. Method Microbiol 1987;19:161–207
    [Google Scholar]
  24. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  25. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note. 1990
    [Google Scholar]
  26. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979;47:87–95 [CrossRef]
    [Google Scholar]
  27. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980;48:459–470 [CrossRef]
    [Google Scholar]
  28. Cheng M, Zhang H, Zhang J, Hu G, Zhang J et al. Lysinibacillus fluoroglycofenilyticus sp. nov., a bacterium isolated from fluoroglycofen contaminated soil. Antonie van Leeuwenhoek 2015;107:157–164 [CrossRef][PubMed]
    [Google Scholar]
  29. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  30. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002986
Loading
/content/journal/ijsem/10.1099/ijsem.0.002986
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error