1887

Abstract

A Gram-stain-negative, non-motile, non-sporulating, rod-shaped, orange-pigmented bacterium, designated strain FQM01, was isolated from a subterranean sediment sample in the Mohe permafrost area, China. Strain FQM01 grew optimally at 25 °C, pH 7.0 and NaCl concentration of 0 % (w/v). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain FQM01 belonged to the genus Sphingomonas . The closest phylogenetic relative was Sphingomonas spermidinifaciens GDMCC 1.657 (97.6 %), followed by Sphingomonas mucosissima DSM 17494 (97.2 %). The DNA G+C content of the isolate was 66.9 mol%. Strain FQM01 contained Q-10 as the predominant ubiquinone, and C18 : 1ω6c and/or C18 : 1ω7c, C16 : 1ω6c and/or C16 : 1ω7c, C16 : 0, C14 : 0 2-OH and C18 : 1 ω7c 11 methyl as the major fatty acids. Major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, sphingoglycolipid and an unidentified glycolipid. Only sym-homospermidine was detected as the polyamine. On the basis of phylogenetic and phenotypic data, strain FQM01 is considered to represent a novel species of Sphingomonas for which the name Sphingomonas floccifaciens sp. nov. is proposed. The type strain is FQM01 (=CGMCC 1.15797=KCTC 52630).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002983
2018-09-11
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/6/1531.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002983&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990;34:99–119 [CrossRef][PubMed]
    [Google Scholar]
  2. Wei S, Wang T, Liu H, Zhang C, Guo J et al. Sphingomonas hengshuiensis sp. nov., isolated from lake wetland. Int J Syst Evol Microbiol 2015;65:4644–4649 [CrossRef][PubMed]
    [Google Scholar]
  3. Akbar A, Chen C, Zhu L, Xin K, Cheng J et al. Sphingomonas hylomeconis sp. nov., isolated from the stem of Hylomecon japonica. Int J Syst Evol Microbiol 2015;65:4025–4031 [CrossRef][PubMed]
    [Google Scholar]
  4. Feng GD, Yang SZ, Wang YH, Zhang XX, Zhao GZ et al. Description of a Gram-negative bacterium, Sphingomonas guangdongensis sp. nov. Int J Syst Evol Microbiol 2014;64:1697–1702
    [Google Scholar]
  5. Sheu SY, Chen YL, Chen WM. Sphingomonas fonticola sp. nov., isolated from spring water. Int J Syst Evol Microbiol 2015;65:4495–4502 [CrossRef][PubMed]
    [Google Scholar]
  6. Kim JH, Kim SH, Kim KH, Lee PC. Sphingomonas lacus sp. nov., an astaxanthin-dideoxyglycoside-producing species isolated from soil near a pond. Int J Syst Evol Microbiol 2015;65:2824–2830 [CrossRef][PubMed]
    [Google Scholar]
  7. Busse HJ, Denner EB, Buczolits S, Salkinoja-Salonen M, Bennasar A et al. Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 2003;53:1253–1260 [CrossRef][PubMed]
    [Google Scholar]
  8. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001;51:1405–1417 [CrossRef][PubMed]
    [Google Scholar]
  9. Zhang RG, Tan X, Zhao XM, Deng J, Lv J. Moheibacter sediminis gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from sediment, and emended descriptions of Empedobacter brevis, Wautersiella falsenii and Weeksella virosa. Int J Syst Evol Microbiol 2014;64:1481–1487 [CrossRef][PubMed]
    [Google Scholar]
  10. Tian M, Zhang RG, Han L, Zhao XM, Lv J. Dyadobacter sediminis sp. nov., isolated from a subterranean sediment sample. Int J Syst Evol Microbiol 2015;65:827–832 [CrossRef][PubMed]
    [Google Scholar]
  11. Han L, Mo Y, Feng Q, Zhang R, Zhao X et al. Tianweitania sediminis gen. nov., sp. nov., a member of the family Phyllobacteriaceae, isolated from subsurface sediment core. Int J Syst Evol Microbiol 2016;66:719–724 [CrossRef][PubMed]
    [Google Scholar]
  12. Han L, Teng YW, Feng QQ, Zhang RG, Zhao XM et al. Description of Sphingomonas mohensis sp. nov., Isolated from Sediment. Curr Microbiol 2016;73:386–392 [CrossRef][PubMed]
    [Google Scholar]
  13. Zhang W, Yuan X, Feng Q, Zhang R, Zhao X et al. Altererythrobacter buctense sp. nov., isolated from mudstone core. Antonie van Leeuwenhoek 2016;109:793–799 [CrossRef][PubMed]
    [Google Scholar]
  14. Colwell FS, Stormberg GJ, Phelps TJ, Birnbaum SA, McKinley J et al. Innovative techniques for collection of saturated and unsaturated subsurface basalts and sediments for microbiological characterization. J Microbiol Meth 1992;15:279–292
    [Google Scholar]
  15. Han L, Wu SJ, Qin CY, Zhu YH, Lu ZQ et al. Hymenobacter qilianensis sp. nov., isolated from a subsurface sandstone sediment in the permafrost region of Qilian Mountains, China and emended description of the genus Hymenobacter. Antonie van Leeuwenhoek 2014;105:971–978 [CrossRef][PubMed]
    [Google Scholar]
  16. Steven B, Briggs G, McKay CP, Pollard WH, Greer CW et al. Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol 2007;59:513–523 [CrossRef][PubMed]
    [Google Scholar]
  17. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  18. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  19. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406 [CrossRef][PubMed]
    [Google Scholar]
  21. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992;9:945–967
    [Google Scholar]
  22. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993;10:1073–1095 [CrossRef][PubMed]
    [Google Scholar]
  23. Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 1989;29:170–179 [CrossRef][PubMed]
    [Google Scholar]
  24. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  25. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  26. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167
    [Google Scholar]
  27. Murray R, Doetsch RN, Robinow CF. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.21–41
    [Google Scholar]
  28. Piao AL, Feng XM, Nogi Y, Han L, Li Y et al. Sphingomonas qilianensis sp. nov., Isolated from surface soil in the permafrost region of Qilian mountains, China. Curr Microbiol 2016;72:363–369 [CrossRef][PubMed]
    [Google Scholar]
  29. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Schaal A et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth 1984;2:233–241
    [Google Scholar]
  30. Da Costa MS, Albuquerque L, Nobre MF et al. 9- The extraction and identification of respiratory lipoquinones of prokaryotes and their use in taxonomy. Methods Microbiol 2011;38:197–206
    [Google Scholar]
  31. Hamana K, Hosoya R, Yokota A et al. Distribution of long linear and branched polyamines in the thermophiles belonging to the domain Bacteria. J Japan Society for Extremophiles 2011;7:10–20
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. MIDI Inc: Newark, DE; 1990
    [Google Scholar]
  33. Feng GD, Yang SZ, Xiong X, Li HP, Zhu HH et al. Sphingomonas spermidinifaciens sp. nov., a novel bacterium containing spermidine as the major polyamine, isolated from an abandoned lead-zinc mine and emended descriptions of the genus Sphingomonas and the species Sphingomonas yantingensis and Sphingomonas japonica. Int J Syst Evol Microbiol 2017;67:2160–2165 [CrossRef][PubMed]
    [Google Scholar]
  34. Feng GD, Yang SZ, Wang YH, Zhang XX, Zhao GZ et al. Description of a Gram-negative bacterium, Sphingomonas guangdongensis sp. nov. Int J Syst Evol Microbiol 2014;64:1697–1702 [CrossRef][PubMed]
    [Google Scholar]
  35. Lee Y, Jeon CO. Sphingomonas frigidaeris sp. nov., isolated from an air conditioning system. Int J Syst Evol Microbiol 2017;67:3907–3912 [CrossRef][PubMed]
    [Google Scholar]
  36. Huang J, Huang Z, Zhang ZD, He LY, Sheng XF. Sphingomonas yantingensis sp. nov., a mineral-weathering bacterium isolated from purplish paddy soil. Int J Syst Evol Microbiol 2014;64:1030–1034 [CrossRef][PubMed]
    [Google Scholar]
  37. Yoon JH, Park S, Kang SJ, Kim W, Oh TK. Sphingomonas hankookensis sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 2009;59:2788–2793 [CrossRef][PubMed]
    [Google Scholar]
  38. Reddy GS, Garcia-Pichel F. Sphingomonas mucosissima sp. nov. and Sphingomonas desiccabilis sp. nov., from biological soil crusts in the Colorado Plateau, USA. Int J Syst Evol Microbiol 2007;57:1028–1034 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002983
Loading
/content/journal/ijsem/10.1099/ijsem.0.002983
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error