1887

Abstract

Two isolates of a Gram-positive, non-motile, coccoid or oval-shaped anaerobic bacterium, designated strains N6H1-15 and YH1_16, were isolated from faecal samples obtained from a mature dog. Analysis of 16S rRNA gene sequences indicated that the isolates belonged to the Blautia coccoides rRNA gene group (cluster XIVa) and were closely related to Blautia hansenii KCTC 5951, Blautia stercoris KCTC 5981, Blautia producta producta KCTC 3695 and B. coccoides DSM 15327, with 96.7, 94.4, 94.2 and 93.9 % sequence similarity, respectively. The two isolates contained m-diaminopimelic acid within their peptidoglycans. The major polar lipids were diphosphatidylglycerol and phosphatidylglycerol, and the major fatty acids were C16 : 0 (18.5 %), C16 : 0 (18.0 %) and C18 : 1 cis 9 (16.2 %). The predominant metabolic end products of glucose fermentation were acetic and lactic acids, and the G+C content was 44.2 mol%. Thus, the polyphasic data suggest that the two new isolates represent a new species, proposed as Blautia argi sp. nov. The type strain is N6H1-15 (=KCTC 15426=JCM 31394).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002981
2018-11-08
2019-10-15
Loading full text...

Full text loading...

References

  1. Kostic AD, Howitt MR, Garrett WS. Exploring host-microbiota interactions in animal models and humans. Genes Dev 2013;27:701–718 [CrossRef][PubMed]
    [Google Scholar]
  2. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T et al. Enterotypes of the human gut microbiome. Nature 2011;473:174–180 [CrossRef][PubMed]
    [Google Scholar]
  3. Harmsen HJ, Raangs GC, He T, Degener JE, Welling GW. Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Appl Environ Microbiol 2002;68:2982–2990 [CrossRef][PubMed]
    [Google Scholar]
  4. Liu C, Finegold SM, Song Y, Lawson PA. Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2008;58:1896–1902 [CrossRef][PubMed]
    [Google Scholar]
  5. Park SK, Kim MS, Bae JW. Blautia faecis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2013;63:599–603 [CrossRef][PubMed]
    [Google Scholar]
  6. Shin NR, Kang W, Tak EJ, Hyun DW, Kim PS et al. Blautia hominis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2018;68:1059–1064 [CrossRef][PubMed]
    [Google Scholar]
  7. Togo AH, Diop A, Bittar F, Maraninchi M, Valero R et al. Description of Mediterraneibacter massiliensis, gen. nov., sp. nov., a new genus isolated from the gut microbiota of an obese patient and reclassification of Ruminococcus faecis, Ruminococcus lactaris, Ruminococcus torques, Ruminococcus gnavus and Clostridium glycyrrhizinilyticum as Mediterraneibacter faecis comb. nov., Mediterraneibacter lactaris comb. nov., Mediterraneibacter torques comb. nov., Mediterraneibacter gnavus comb. nov. and Mediterraneibacter glycyrrhizinilyticus comb. nov. Antonie van Leeuwenhoek 2018;1–22
    [Google Scholar]
  8. Jung MY, Kim JS, Paek WK, Styrak I, Park IS et al. Description of Lysinibacillus sinduriensis sp. nov., and transfer of Bacillus massiliensis and Bacillus odysseyi to the genus Lysinibacillus as Lysinibacillus massiliensis comb. nov. and Lysinibacillus odysseyi comb. nov. with emended description of the genus Lysinibacillus. Int J Syst Evol Microbiol 2012;62:2347–2355 [CrossRef][PubMed]
    [Google Scholar]
  9. Chang YH, Jung MY, Park IS, Oh HM. Sporolactobacillus vineae sp. nov., a spore-forming lactic acid bacterium isolated from vineyard soil. Int J Syst Evol Microbiol 2008;58:2316–2320 [CrossRef][PubMed]
    [Google Scholar]
  10. Chun J, Goodfellow M. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 1995;45:240–245 [CrossRef][PubMed]
    [Google Scholar]
  11. Woese CR, Magrum LJ, Gupta R, Siegel RB, Stahl DA et al. Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. Nucleic Acids Res 1980;8:2275–2294 [CrossRef][PubMed]
    [Google Scholar]
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  13. Felsenstein J. PHYLIP (Phylogeny Inference Package), Version 3.5. Distributed by The Author Department of Genome Sciences, SEA: University of Washington; 1993
    [Google Scholar]
  14. Jeon YS, Chung H, Park S, Hur I, Lee JH et al. jPHYDIT: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 2005;21:3171–3173 [CrossRef][PubMed]
    [Google Scholar]
  15. Kimura M. The Neutral Theory of Molecular Evolution Cambridge University, NY: Cambridge; 1983
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  17. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969;18:1–32 [CrossRef]
    [Google Scholar]
  18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  19. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  20. Cho E, Park SN, Shin Y, Lim YK, Paek J et al. Peptoniphilus mikwangii sp. nov., isolated from a clinical specimen of human origin. Curr Microbiol 2015;70:260–266 [CrossRef][PubMed]
    [Google Scholar]
  21. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013;10:563–569 [CrossRef][PubMed]
    [Google Scholar]
  22. Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016;44:6614–6624 [CrossRef][PubMed]
    [Google Scholar]
  23. Sasser M. Identification of Bacteria by Gas Chromatog-Raphy of Cellular Fatty Acids, MIDI Technical Note 101. MIDI Inc: Newark, DE; 1990
    [Google Scholar]
  24. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  25. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  26. Stackebrandt E. Family I Erysipelotichaceae. In de Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology New York: Springer; 2009; pp.1299
    [Google Scholar]
  27. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  28. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  29. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994;44:812–826 [CrossRef][PubMed]
    [Google Scholar]
  30. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;33:152
    [Google Scholar]
  31. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014;12:635–645 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002981
Loading
/content/journal/ijsem/10.1099/ijsem.0.002981
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error