1887

Abstract

Two Listeria -like isolates obtained from mangrove swamps in Goa, India were characterized using polyphasic combinations of phenotypic, chemotaxonomic and whole-genome sequence (WGS)-based approaches. The isolates presented as short, non-spore-forming, Gram-positive rods, that were non-motile, oxidase-negative, catalase-positive and exhibited α-haemolysis on 5 % sheep- and horse-blood agar plates. The 16S rRNA gene sequences exhibited 93.7–99.7 % nucleotide identity to other Listeria species and had less than 92 % nucleotide identity to species of closely related genera, indicating that the isolates are de facto members of the genus Listeria . Their overall fatty acid composition resembled that of other Listeria species, with quantitative differences in iso C15 : 0, anteiso C15 : 0, iso C16 : 0, C16 : 0, iso C17 : 0 and anteiso C17 : 0 fatty acid profiles. Phylogeny based on 406 core coding DNA sequences grouped these two isolates in a monophyletic clade within the genus Listeria . WGS-based average nucleotide identity and in silico DNA–DNA hybridization values were lower than the recommended cut-off values of 95 and 70 %, respectively, to the other Listeria species, indicating that they are founding members of a novel Listeria species. We suggest the name Listeria goaensis sp. nov. be created and the type strain is ILCC801 (=KCTC 33909;=DSM 29886;=MCC 3285).

Keyword(s): Goa , haemolysis , L. goaensis , Listeria and new taxa
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002980
2018-08-29
2022-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/10/3285.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002980&mimeType=html&fmt=ahah

References

  1. McLauchlin J, Rees CED. Listeria. In Bergey’s Manual of Systematics of Archaea and Bacteria Chichester, UK: John Wiley & Sons, Ltd; 2008 pp. 1–29
    [Google Scholar]
  2. Rocourt J, Grimont PAD. Notes: Listeria welshimeri sp. nov. and Listeria seeligeri sp. nov. Int J Syst Bacteriol 1983; 33:866–869 [View Article]
    [Google Scholar]
  3. Gebretsadik S, Kassa T, Alemayehu H, Huruy K, Kebede N. Isolation and characterization of Listeria monocytogenes and other Listeria species in foods of animal origin in Addis Ababa, Ethiopia. J Infect Public Health 2011; 4:22–29 [View Article][PubMed]
    [Google Scholar]
  4. Graves LM, Helsel LO, Steigerwalt AG, Morey RE, Daneshvar MI et al. Listeria marthii sp. nov., isolated from the natural environment, Finger Lakes National Forest. Int J Syst Evol Microbiol 2010; 60:1280–1288 [View Article][PubMed]
    [Google Scholar]
  5. Leclercq A, Clermont D, Bizet C, Grimont PA, Le Flèche-Matéos A et al. Listeria rocourtiae sp. nov. Int J Syst Evol Microbiol 2010; 60:2210–2214 [View Article][PubMed]
    [Google Scholar]
  6. Bertsch D, Rau J, Eugster MR, Haug MC, Lawson PA et al. Listeria fleischmannii sp. nov., isolated from cheese. Int J Syst Evol Microbiol 2013; 63:526–532 [View Article][PubMed]
    [Google Scholar]
  7. Lang Halter E, Neuhaus K, Scherer S. Listeria weihenstephanensis sp. nov., isolated from the water plant Lemna trisulca taken from a freshwater pond. Int J Syst Evol Microbiol 2013; 63:641–647 [View Article][PubMed]
    [Google Scholar]
  8. den Bakker HC, Warchocki S, Wright EM, Allred AF, Ahlstrom C et al. Listeria floridensis sp. nov., Listeria aquatica sp. nov., Listeria cornellensis sp. nov., Listeria riparia sp. nov. and Listeria grandensis sp. nov., from agricultural and natural environments. Int J Syst Evol Microbiol 2014; 64:1882–1889 [View Article][PubMed]
    [Google Scholar]
  9. Weller D, Andrus A, Wiedmann M, den Bakker HC. Listeria booriae sp. nov. and Listeria newyorkensis sp. nov., from food processing environments in the USA. Int J Syst Evol Microbiol 2015; 65:286–292 [View Article][PubMed]
    [Google Scholar]
  10. Núñez-Montero K, Leclercq A, Moura A, Vales G, Peraza J et al. Listeria costaricensis sp. nov. Int J Syst Evol Microbiol 2018; 68:844–850 [View Article][PubMed]
    [Google Scholar]
  11. de Noordhout CM, Devleesschauwer B, Angulo FJ, Verbeke G, Haagsma J et al. The global burden of listeriosis: a systematic review and meta-analysis. Lancet Infect Dis 2014; 14:1073–1082 [View Article][PubMed]
    [Google Scholar]
  12. Poharkar KV, Kerkar S, Doijad SP, Barbuddhe SB. Prevalence and genetic profiles of Escherichia coli from mangroves and mangrove associated foods off Goa, India. Mar Pollut Bull 2014; 85:86–91 [View Article][PubMed]
    [Google Scholar]
  13. USDA Isolation and Identification of Listeria Monocytogenes from Red Meat, Poultry, Ready-To-Eat Siluriformes (Fish) and Egg Products, and Environmental Samples Athens GA: 2012 www.fsis.usda.gov/wps/wcm/connect/1710bee8-76b9-4e6c-92fc-fdc290dbfa92/MLG-8.pdf?MOD=AJPERES
    [Google Scholar]
  14. Gerhardt P, Murray RG, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  15. Lee L, Chu T. Microbiology Laboratory Manual Plymouth MI: Hayden-McNeil Publishing; 2008
    [Google Scholar]
  16. Bille J, Catimel B, Bannerman E, Jacquet C, Yersin MN et al. API Listeria, a new and promising one-day system to identify Listeria isolates. Appl Environ Microbiol 1992; 58:1857–1860[PubMed]
    [Google Scholar]
  17. Pusztahelyi T, Szabó J, Dombrádi Z, Kovács S, Pócsi I. Foodborne Listeria monocytogenes: a real challenge in quality control. Scientifica 2016; 2016:1–6 [View Article][PubMed]
    [Google Scholar]
  18. European Committee on Antimicrobial Suceptibility Testing (EUCAST) Breakpoint Tables for Interpretation of Mics and Zone Diameters, Version 8.0 The European Committee on Antimicrobial Suceptibility Testing; 2018
    [Google Scholar]
  19. Granier SA, Moubareck C, Colaneri C, Lemire A, Roussel S et al. Antimicrobial resistance of Listeria monocytogenes isolates from food and the environment in France over a 10-year period. Appl Environ Microbiol 2011; 77:2788–2790 [View Article][PubMed]
    [Google Scholar]
  20. Geoffroy C, Gaillard JL, Alouf JE, Berche P. Production of thiol-dependent haemolysins by Listeria monocytogenes and related species. J Gen Microbiol 1989; 135:481–487 [View Article][PubMed]
    [Google Scholar]
  21. McLauchin J, Rees CED. Genus Listeria. In Vos P, Garrity G, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology Baltimore, MD: Williams and Williams; 2008
    [Google Scholar]
  22. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  23. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  24. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  25. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  26. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article][PubMed]
    [Google Scholar]
  27. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article][PubMed]
    [Google Scholar]
  28. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016; 4:e1900v1
    [Google Scholar]
  29. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  30. Auch AF, Klenk HP, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142–148 [View Article][PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002980
Loading
/content/journal/ijsem/10.1099/ijsem.0.002980
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error