1887

Abstract

A Gram-stain-negative, aerobic, non-endospore-forming, motile by a polar flagellum, rod-shaped bacterium, designated strain DHOG02, which produced yellow-pigmented colonies, was isolated from a soil sample collected from the lower subtropical forest of the Dinghushan Biosphere Reserve, Guangdong Province, PR China. Strain DHOG02 grew at 12–37 °C, pH 4–9 and 0–4 % (w/v) NaCl, with optima at 28 °C, pH 6–7 and 0.5 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that this strain formed a clade with Dyella lipolytica DHOB07 and Dyella jejuensis JP1, with sequence similarities of 98.0 and 97.4 %, respectively. The result of the concatenated partial gyrB, lepA and recA gene sequence analysis confirmed that strain DHOG02 belongs to the genus Dyella, but is distinct from all currently known species of the genus. The G+C content of the genomic DNA was 62 mol%. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified aminophospholipid and phospholipid. Ubiquinone-8 was the only respiratory quinone detected, and iso-C15 : 0, iso-C17 : 1 ω9c and summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) were the major fatty acids, all of which supported the affiliation of strain DHOG02 to the genus Dyella . On the basis of the evidence presented here, strain DHOG02 represents a novel species of the genus Dyella , for which the name Dyella halodurans sp. nov. is proposed. The type strain is DHOG02 (=NBRC 111474=CGMCC 1.15435).

Keyword(s): Dyella , housekeeping gene and phylogeny
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002969
2018-08-20
2024-11-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/10/3237.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002969&mimeType=html&fmt=ahah

References

  1. Xie CH, Yokota A. Dyella japonica gen. nov., sp. nov., a gamma-proteobacterium isolated from soil. Int J Syst Evol Microbiol 2005; 55:753–756 [View Article][PubMed]
    [Google Scholar]
  2. Naushad S, Adeolu M, Wong S, Sohail M, Schellhorn HE et al. A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov. and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives. Antonie van Leeuwenhoek 2015; 107:467–485 [View Article][PubMed]
    [Google Scholar]
  3. An DS, Im WT, Yang HC, Yang DC, Lee ST. Dyella koreensis sp. nov., a β-glucosidase-producing bacterium. Int J Syst Evol Microbiol 2005; 55:1625–1628 [View Article][PubMed]
    [Google Scholar]
  4. Jung HM, Ten LN, Kim KH, An DS, Im WT et al. Dyella ginsengisoli sp. nov., isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 2009; 59:460–465 [View Article][PubMed]
    [Google Scholar]
  5. Lee DW, Lee SD. Dyella marensis sp. nov., isolated from cliff soil. Int J Syst Evol Microbiol 2009; 59:1397–1400 [View Article][PubMed]
    [Google Scholar]
  6. Weon HY, Anandham R, Kim BY, Hong SB, Jeon YA et al. Dyella soli sp. nov. and Dyella terrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009; 59:1685–1690 [View Article][PubMed]
    [Google Scholar]
  7. Anandham R, Kwon SW, Indira Gandhi P, Kim SJ, Weon HY et al. Dyella thiooxydans sp. nov., a facultatively chemolithotrophic, thiosulfate-oxidizing bacterium isolated from rhizosphere soil of sunflower (Helianthus annuus L.). Int J Syst Evol Microbiol 2011; 61:392–398 [View Article][PubMed]
    [Google Scholar]
  8. Son HM, Yang JE, Yi EJ, Park Y, Won KH et al. Dyella kyungheensis sp. nov., isolated from soil of a cornus fruit field. Int J Syst Evol Microbiol 2013; 63:3807–3811 [View Article][PubMed]
    [Google Scholar]
  9. Zhao F, Guo XQ, Wang P, He LY, Huang Z et al. Dyella jiangningensis sp. nov., a γ-proteobacterium isolated from the surface of potassium-bearing rock. Int J Syst Evol Microbiol 2013; 63:3154–3157 [View Article][PubMed]
    [Google Scholar]
  10. Kim MS, Hyun DW, Kim JY, Kim S, Bae JW et al. Dyella jejuensis sp. nov., isolated from soil of Hallasan Mountain in Jeju Island. J Microbiol 2014; 52:373–377 [View Article][PubMed]
    [Google Scholar]
  11. Chen MH, Lv YY, Wang J, Tang L, Qiu LH. Dyella humi sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016; 66:4372–4376 [View Article][PubMed]
    [Google Scholar]
  12. Chen MH, Xia F, Lv YY, Zhou XY, Qiu LH. Dyella acidisoli sp. nov., D. flagellata sp. nov. and D. nitratireducens sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2017; 67:736–743 [View Article][PubMed]
    [Google Scholar]
  13. Tang L, Chen MH, Nie XC, Ma MR, Qiu LH. Dyella lipolytica sp. nov., a lipolytic bacterium isolated from lower subtropical forest soil. Int J Syst Evol Microbiol 2017; 67:1235–1240 [View Article][PubMed]
    [Google Scholar]
  14. Xia F, Chen MH, Lv YY, Zhang HY, Qiu LH. Dyella caseinilytica sp. nov., Dyella flava sp. nov. and Dyella mobilis sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2017; 67:3237–3245 [View Article][PubMed]
    [Google Scholar]
  15. Chaudhary DK, Kim J. Dyella agri sp. nov., isolated from reclaimed grassland soil. Int J Syst Evol Microbiol 2017; 67:4246–4252 [View Article][PubMed]
    [Google Scholar]
  16. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  17. Harley JP, Prescott LM. Laboratory Exercises in Microbiology, 5th ed. New York: McGraw-Hill; 2002
    [Google Scholar]
  18. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  19. Brown AE. Benson’s Microbiological Applications: Laboratory Manual in General Microbiology, 4th ed. New York: McGraw-Hill; 1985
    [Google Scholar]
  20. Atlas RM. Composition of media. In Parks LC. (editor) Handbook of Microbiology Media, 2nd Boca Raton, FL: CRC Press; 1993
    [Google Scholar]
  21. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 36:49
    [Google Scholar]
  22. Delong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992; 89:5685–5689 [View Article][PubMed]
    [Google Scholar]
  23. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  24. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  27. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  28. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  29. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962; 5:109–118 [View Article][PubMed]
    [Google Scholar]
  30. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  31. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  32. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.002969
Loading
/content/journal/ijsem/10.1099/ijsem.0.002969
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error