1887

Abstract

A rod-shaped, Gram-stain-positive, obligately anaerobic, xylan-degrading bacterium, SK-Y3, was isolated from oily-sludge of Shengli oilfield, China. Optimum growth occurred at 50 °C, at pH 7.5 and without addition of NaCl. The predominant cellular fatty acids of strain SK-Y3 were iso-C15 : 0, anteiso-C15 : 0 and iso-C17 : 0, and the main polar lipids were glycolipids (GL), lipids (L), phosphatidylglycerol (PG) and diphosphatidylglycerol (DPG); no respiratory quinones were detected. The genomic DNA G+C content was 37.2 mol%. Phylogenetic analysis of 16S rRNA gene sequences showed that strain SK-Y3 belongs to clostridial cluster III, exhibiting 91–92% sequence similarity to the most closely related species, namely Clostridium clariflavum , Clostridium straminisolvens and Acetivibrio cellulolyticus . Based on distinct physiological and phylogenetic differences from the aforementioned described taxa, strain SK-Y3 (=DSM 103557=ACCC 19952) is proposed as the type strain of a novel species of a new genus, Petroclostridium xylanilyticum gen. nov., sp. nov. Furthermore, analysis through 16S rRNA gene, ribosomal protein and whole genome sequences indicated that clostridial cluster III members should be reclassified into four novel genera for which the names Hungateiclostridium gen. nov., Thermoclostridium gen. nov., Ruminiclostridium gen. nov. and Pseudoclostridium gen. nov. are proposed. In combination with the genera Anaerobacterium , Cellulosibacter , Ercella , Fastidiosipila , Mageeibacillus , Pseudobacteroides , Petroclostridium and Saccharofermentans , clostridial cluster III members formed a monophyletic clade within the order Clostridiales but that was clearly distinguished from other Ruminococcaceae members, which is proposed as a novel family, Hungateiclostridiaceae fam. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002966
2018-08-20
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/10/3197.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002966&mimeType=html&fmt=ahah

References

  1. Cato EP, George WL, Finegold SM. Genus Clostridium Prazmowski 1880, 23AL. In Sneath PHA, Mair NS, Sharpe ME, Holt JG. (editors) Bergey's Manual of Systematic Bacteriology, 1st ed. vol. 2 Baltimore: The Williams and Wilkins Co.; 1986 pp. 1141–1200
    [Google Scholar]
  2. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994; 44:812–826 [View Article][PubMed]
    [Google Scholar]
  3. Lawson PA, Rainey FA. Proposal to restrict the genus Clostridium Prazmowski to Clostridium butyricum and related species. Int J Syst Evol Microbiol 2016; 66:1009–1016 [View Article][PubMed]
    [Google Scholar]
  4. Ludwig W, Schleifer K-H, Whitman WB. Revised road map to the phylum Firmicutes. In de Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual® of Systematic Bacteriology: Volume Three The Firmicutes New York, NY: Springer New York; 2009 pp. 1–13
    [Google Scholar]
  5. Yutin N, Galperin MY. A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ Microbiol 2013; 15:2631–2641 [View Article][PubMed]
    [Google Scholar]
  6. Stackebrandt E, Kramer I, Swiderski J, Hippe H. Phylogenetic basis for a taxonomic dissection of the genus Clostridium. FEMS Immunol Med Microbiol 1999; 24:253–258 [View Article][PubMed]
    [Google Scholar]
  7. Cheng L, He Q, Ding C, Dai LR, Li Q et al. Novel bacterial groups dominate in a thermophilic methanogenic hexadecane-degrading consortium. FEMS Microbiol Ecol 2013; 85:568–577 [View Article][PubMed]
    [Google Scholar]
  8. Macy JM, Snellen JE, Hungate RE. Use of syringe methods for anaerobiosis. Am J Clin Nutr 1972; 25:1318–1323 [View Article][PubMed]
    [Google Scholar]
  9. Cheng L, Dai L, Li X, Zhang H, Lu Y. Isolation and characterization of Methanothermobacter crinale sp. nov., a novel hydrogenotrophic methanogen from the Shengli oil field. Appl Environ Microbiol 2011; 77:5212–5219 [View Article][PubMed]
    [Google Scholar]
  10. Widdel F, Boetius A, Rabus R. Anaerobic biodegradation of hydrocarbons including methane. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E et al. (editors) The Prokaryotes: Ecophysiology and Biochemistry New York: Springer; 2006 pp. 1028–1049
    [Google Scholar]
  11. Ma S, Huang Y, Wang C, Fan H, Dai L et al. Defluviitalea raffinosedens sp. nov., a thermophilic, anaerobic, saccharolytic bacterium isolated from an anaerobic batch digester treating animal manure and rice straw. Int J Syst Evol Microbiol 2017; 67:1607–1612 [View Article][PubMed]
    [Google Scholar]
  12. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586[PubMed]
    [Google Scholar]
  13. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  14. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  15. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  16. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  17. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article][PubMed]
    [Google Scholar]
  18. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology American Society of Microbiology; 2007
    [Google Scholar]
  19. Lane D. 16S/23S rRNA Sequencing. In Stackebrandt E, Goodfellow M. (editors) Development and Application of Nucleic Acid Probes New York: John Wiley & Son Ltd; 1991 pp. 115–175
    [Google Scholar]
  20. Feng Y, Cheng L, Zhang X, Li X, Deng Y et al. Thermococcoides shengliensis gen. nov., sp. nov., a new member of the order Thermotogales isolated from oil-production fluid. Int J Syst Evol Microbiol 2010; 60:932–937 [View Article][PubMed]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  25. Adeolu M, Alnajar S, Naushad S, S Gupta R. Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016; 66:5575–5599 [View Article][PubMed]
    [Google Scholar]
  26. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article][PubMed]
    [Google Scholar]
  27. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006; 22:1658–1659 [View Article][PubMed]
    [Google Scholar]
  28. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011; 7:e1002195 [View Article][PubMed]
    [Google Scholar]
  29. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004; 5:113–119 [View Article][PubMed]
    [Google Scholar]
  30. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article][PubMed]
    [Google Scholar]
  31. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007; 56:564–577 [View Article][PubMed]
    [Google Scholar]
  32. Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article][PubMed]
    [Google Scholar]
  33. Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 2001; 18:691–699 [View Article][PubMed]
    [Google Scholar]
  34. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  35. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article][PubMed]
    [Google Scholar]
  36. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article][PubMed]
    [Google Scholar]
  37. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article][PubMed]
    [Google Scholar]
  38. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  39. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  40. Nishiyama T, Ueki A, Kaku N, Ueki K. Clostridium sufflavum sp. nov., isolated from a methanogenic reactor treating cattle waste. Int J Syst Evol Microbiol 2009; 59:981–986 [View Article][PubMed]
    [Google Scholar]
  41. Shiratori H, Sasaya K, Ohiwa H, Ikeno H, Ayame S et al. Clostridium clariflavum sp. nov. and Clostridium caenicola sp. nov., moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge. Int J Syst Evol Microbiol 2009; 59:1764–1770 [View Article][PubMed]
    [Google Scholar]
  42. Takada T, Watanabe K, Makino H, Kushiro A. Reclassification of Eubacterium desmolans as Butyricicoccus desmolans comb. nov., and description of Butyricicoccus faecihominis sp. nov., a butyrate-producing bacterium from human faeces. Int J Syst Evol Microbiol 2016; 66:4125–4131 [View Article][PubMed]
    [Google Scholar]
  43. Horino H, Fujita T, Tonouchi A. Description of Anaerobacterium chartisolvens gen. nov., sp. nov., an obligately anaerobic bacterium from Clostridium rRNA cluster III isolated from soil of a Japanese rice field, and reclassification of Bacteroides cellulosolvens Murray et al. 1984 as Pseudobacteroides cellulosolvens gen. nov., comb. nov. Int J Syst Evol Microbiol 2014; 64:1296–1303 [View Article][PubMed]
    [Google Scholar]
  44. Falsen E, Collins MD, Welinder-Olsson C, Song Y, Finegold SM et al. Fastidiosipila sanguinis gen. nov., sp. nov., a new Gram-positive, coccus-shaped organism from human blood. Int J Syst Evol Microbiol 2005; 55:853–858 [View Article][PubMed]
    [Google Scholar]
  45. Austin MN, Rabe LK, Srinivasan S, Fredricks DN, Wiesenfeld HC et al. Mageeibacillus indolicus gen. nov., sp. nov.: a novel bacterium isolated from the female genital tract. Anaerobe 2015; 32:37–42 [View Article][PubMed]
    [Google Scholar]
  46. Chen S, Niu L, Zhang Y. Saccharofermentans acetigenes gen. nov., sp. nov., an anaerobic bacterium isolated from sludge treating brewery wastewater. Int J Syst Evol Microbiol 2010; 60:2735–2738 [View Article][PubMed]
    [Google Scholar]
  47. Fardeau ML, Ollivier B, Garcia JL, Patel BK. Transfer of Thermobacteroides leptospartum and Clostridium thermolacticum as Clostridium stercorarium subsp. leptospartum subsp. thermolacticum subsp. nov., comb. nov. and C. stercorarium subsp. thermolacticum subsp. nov., comb. nov. Int J Syst Evol Microbiol 2001; 51:1127–1131 [View Article][PubMed]
    [Google Scholar]
  48. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  49. Lal S, Levin DB. Comparative genomics of core metabolism genes of cellulolytic and non-cellulolytic clostridium species. In Hatti-Kaul R, Mamo G, Mattiasson B. (editors) Anaerobes in Biotechnology Cham: Springer International Publishing; 2016 pp. 79–112
    [Google Scholar]
  50. Hungate RE. Studies on cellulose fermentation: I. The culture and physiology of an anaerobic cellulose-digesting bacterium. J Bacteriol 1944; 48:499–513[PubMed]
    [Google Scholar]
  51. Hethener P, Brauman A, Garcia J-L. Clostridium termitidis sp. nov., a cellulolytic bacterium from the Gut of the wood-feeding termite, nasutitermes lujae. Syst Appl Microbiol 1992; 15:52–58 [View Article]
    [Google Scholar]
  52. Madden RH. Isolation and characterization of Clostridium stercorarium sp. nov., Cellulolytic Thermophile. Int J Syst Bacteriol 1983; 33:837–840 [View Article]
    [Google Scholar]
  53. Toda Y, Saiki T, Uozumi T, Beppu T. Isolation and characterization of a protease-producing, thermophilic, anaerobic bacterium, Thermobacteroides leptospartum sp. nov. Agric Biol Chem 1988; 52:1339–1344 [View Article]
    [Google Scholar]
  54. Le Ruyet P, Dubourguier HC, Albagnac G, Prensier G. Characterization of Clostridium Thermolacticum sp. nov., a hydrolytic thermophilic anaerobe producing high amounts of lactate. Syst Appl Microbiol 1985; 6:196–202 [View Article]
    [Google Scholar]
  55. Viljoen JA, Fred EB, Peterson WH. The fermentation of cellulose by thermophilic bacteria. J Agric Sci 1926; 16:1–17 [View Article]
    [Google Scholar]
  56. Skerman VBD, Sneath PHA, McGowan V. Approved lists of bacterial names. Int J Syst Evol Microbiol 1980; 30:225–420 [View Article]
    [Google Scholar]
  57. Ng TK, Weimer TK, Zeikus JG. Cellulolytic and physiological properties of Clostridium thermocellum. Arch Microbiol 1977; 114:1–7[PubMed]
    [Google Scholar]
  58. Patel GB, Khan AW, Agnew BJ, Colvin JR. Isolation and characterization of an anaerobic, cellulolytic microorganism, Acetivibrio cellulolyticus gen. nov., sp. nov.. Int J Syst Bacteriol 1980; 30:179–185 [View Article]
    [Google Scholar]
  59. Yang JC, Chynoweth DP, Williams DS, Li A. Clostridium aldrichii sp. nov., a cellulolytic mesophile inhabiting a wood-fermenting anaerobic digester. Int J Syst Bacteriol 1990; 40:268–272 [View Article][PubMed]
    [Google Scholar]
  60. Zhilina TN, Kevbrin VV, Turova TP, Lysenko AM, Kostrikina NA et al. Clostridium alkalicellum sp. nov., an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal region. Mikrobiologiia 2005; 74:557–566 [View Article][PubMed]
    [Google Scholar]
  61. Euzéby J. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2006; 56:925–927 [View Article][PubMed]
    [Google Scholar]
  62. Kato S, Haruta S, Cui ZJ, Ishii M, Yokota A et al. Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. Int J Syst Evol Microbiol 2004; 54:2043–2047 [View Article][PubMed]
    [Google Scholar]
  63. Koeck DE, Mechelke M, Zverlov VV, Liebl W, Schwarz WH. Herbivorax saccincola gen. nov., sp. nov., a cellulolytic, anaerobic, thermophilic bacterium isolated via in sacco enrichments from a lab-scale biogas reactor. Int J Syst Evol Microbiol 2016; 66:4458–4463 [View Article][PubMed]
    [Google Scholar]
  64. Validation of the publication of new names and new combinations previously effectively published outside the IJSB. list no. 41. Int J Syst Evol Microbiol 1992; 42:327–328
    [Google Scholar]
  65. Petitdemange E, Caillet F, Giallo J, Gaudin C. Clostridium cellulolyticum sp. nov., a cellulolytic, mesophilic: species from decayed grass. Int J Syst Bacteriol 1984; 34:155–159 [View Article]
    [Google Scholar]
  66. Monserrate E, Leschine SB, Canale-Parola E. Clostridium hungatei sp. nov., a mesophilic, N2-fixing cellulolytic bacterium isolated from soil. Int J Syst Evol Microbiol 2001; 51:123–132 [View Article][PubMed]
    [Google Scholar]
  67. Sukhumavasi J, Ohmiya K, Shimizu S, Ueno K. Clostridium josui sp. nov., a cellulolytic, moderate thermophilic species from thai compost. Int J Syst Bacteriol 1988; 38:179–182 [View Article]
    [Google Scholar]
  68. Madden RH, Bryder MJ, Poole NJ. Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium papyrosolvens sp. nov. Int J Syst Bacteriol 1982; 32:87–91 [View Article]
    [Google Scholar]
  69. Drent WJ, Lahpor GA, Wiegant WM, Gottschal JC. Fermentation of inulin by clostridium thermosuccinogenes sp. nov., a thermophilic anaerobic bacterium isolated from various habitats. Appl Environ Microbiol 1991; 57:455–462[PubMed]
    [Google Scholar]
  70. Chen S, Dong X. Acetanaerobacterium elongatum gen. nov., sp. nov., from paper mill waste water. Int J Syst Evol Microbiol 2004; 54:2257–2262 [View Article][PubMed]
    [Google Scholar]
  71. van Gelder AH, Sousa DZ, Rijpstra WI, Damsté JS, Stams AJ et al. Ercella succinigenes gen. nov., sp. nov., an anaerobic succinate-producing bacterium. Int J Syst Evol Microbiol 2014; 64:2449–2454 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002966
Loading
/content/journal/ijsem/10.1099/ijsem.0.002966
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error