1887

Abstract

A Gram-stain-positive, catalase-positive and pleomorphic rod organism was isolated from malted barley in Finland, classified initially by partial 16S rRNA gene sequencing and originally deposited in the VTT Culture Collection as a strain of Propionibacterium acidipropionici (currently Acidipropionibacterium acidipropionici ). The subsequent comparison of the whole 16S rRNA gene with other representatives of the genus Acidipropionibacterium revealed that the strain belongs to a novel species, most closely related to Acidipropionibacterium microaerophilum and Acidipropionibacterium acidipropionici , with similarity values of 98.46 and 98.31 %, respectively. The whole genome sequencing using PacBio RS II platform allowed further comparison of the genome with all of the other DNA sequences available for the type strains of the Acidipropionibacterium species. Those comparisons revealed the highest similarity of strain JS278 to A. acidipropionici , which was confirmed by the average nucleotide identity analysis. The genome of strain JS278 is intermediate in size compared to the A. acidipropionici and Acidipropionibacterium jensenii at 3 432 872 bp, the G+C content is 68.4 mol%. The strain fermented a wide range of carbon sources, and produced propionic acid as the major fermentation product. Besides its poor ability to grow at 37 °C and positive catalase reaction, the observed phenotype was almost indistinguishable from those of A. acidipropionici and A. jensenii . Based on our findings, we conclude that the organism represents a novel member of the genus Acidipropionibacterium , for which we propose the name Acidipropionibacterium virtanenii sp. nov. The type strain is JS278 (=VTT E-113202=DSM 106790).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002965
2018-08-29
2019-09-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/10/3175.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002965&mimeType=html&fmt=ahah

References

  1. Scholz CF, Kilian M. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol 2016;66:4422–4432 [CrossRef][PubMed]
    [Google Scholar]
  2. Van Niel CB. The Propionic Acid Bacteria Delft University of Technology; 1928
    [Google Scholar]
  3. Koussémon M, Combet-Blanc Y, Patel BK, Cayol JL, Thomas P et al. Propionibacterium microaerophilum sp. nov., a microaerophilic bacterium isolated from olive mill wastewater. Int J Syst Evol Microbiol 2001;51:1373–1382 [CrossRef][PubMed]
    [Google Scholar]
  4. Lucena-Padrós H, González JM, Caballero-Guerrero B, Ruiz-Barba JL, Maldonado-Barragán A. Propionibacterium olivae sp. nov. and Propionibacterium damnosum sp. nov., isolated from spoiled packaged Spanish-style green olives. Int J Syst Evol Microbiol 2014;64:2980–2985 [CrossRef][PubMed]
    [Google Scholar]
  5. Guan N, Du B, Li J, Shin HD, Chen RR et al. Comparative genomics and transcriptomics analysis-guided metabolic engineering of Propionibacterium acidipropionici for improved propionic acid production. Biotechnol Bioeng 2018;115:483–494 [CrossRef][PubMed]
    [Google Scholar]
  6. Luna-Flores CH, Palfreyman RW, Krömer JO, Nielsen LK, Marcellin E. Improved production of propionic acid using genome shuffling. Biotechnol J 2017;12:1600120 [CrossRef][PubMed]
    [Google Scholar]
  7. Parizzi LP, Grassi MC, Llerena LA, Carazzolle MF, Queiroz VL et al. The genome sequence of Propionibacterium acidipropionici provides insights into its biotechnological and industrial potential. BMC Genomics 2012;13:562 [CrossRef][PubMed]
    [Google Scholar]
  8. NCBI Genome-Acidipropionibacterium acidipropionici. 2017;www.ncbi.nlm.nih.gov/genome/genomes/13350 [accessed 7 December 2017]
  9. Faye T, Langsrud T, Nes IF, Holo H. Biochemical and genetic characterization of propionicin T1, a new bacteriocin from Propionibacterium thoenii. Appl Environ Microbiol 2000;66:4230–4236 [CrossRef][PubMed]
    [Google Scholar]
  10. Grinstead DA, Barefoot SF. Jenseniin G, a heat-stable bacteriocin produced by Propionibacterium jensenii P126. Appl Environ Microbiol 1992;58:215–220[PubMed]
    [Google Scholar]
  11. Lyon WJ, Glatz BA. Isolation and purification of propionicin PLG-1, a bacteriocin produced by a strain of Propionibacterium thoenii. Appl Environ Microbiol 1993;59:83–88[PubMed]
    [Google Scholar]
  12. van der Merwe IR, Bauer R, Britz TJ, Dicks LM. Characterization of thoeniicin 447, a bacteriocin isolated from Propionibacterium thoenii strain 447. Int J Food Microbiol 2004;92:153–160 [CrossRef][PubMed]
    [Google Scholar]
  13. Miescher S, Stierli MP, Teuber M, Meile L. Propionicin SM1, a bacteriocin from Propionibacterium jensenii DF1: isolation and characterization of the protein and its gene. Syst Appl Microbiol 2000;23:174–184 [CrossRef][PubMed]
    [Google Scholar]
  14. Chamlagain B, Deptula P, Edelmann M, Kariluoto S, Grattepanche F et al. Effect of the lower ligand precursors on vitamin B12 production by food-grade Propionibacteria. LWT- Food Sci Technol 2016;72:117–124 [CrossRef]
    [Google Scholar]
  15. Malik AC, Reinbold GW, Vedamuthu ER. An evaluation of the taxonomy of Propionibacterium. Can J Microbiol 1968;14:1185–1191 [CrossRef][PubMed]
    [Google Scholar]
  16. Deptula P, Laine PK, Roberts RJ, Smolander OP, Vihinen H et al. De novo assembly of genomes from long sequence reads reveals uncharted territories of Propionibacterium freudenreichii. BMC Genomics 2017;18:790 [CrossRef][PubMed]
    [Google Scholar]
  17. Koskinen P, Deptula P, Smolander OP, Tamene F, Kammonen J et al. Complete genome sequence of Propionibacterium freudenreichii DSM 20271T. Stand Genomic Sci 2015;10:83 [CrossRef][PubMed]
    [Google Scholar]
  18. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  19. Microbial Genome Submission Check. 2017;www.ncbi.nlm.nih.gov/genomes/frameshifts/frameshifts.cgi [accessed 8 December 2017]
  20. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016;44:D457–D462 [CrossRef][PubMed]
    [Google Scholar]
  21. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 2017;45:D200–D203 [CrossRef][PubMed]
    [Google Scholar]
  22. Deptula P, Kylli P, Chamlagain B, Holm L, Kostiainen R et al. BluB/CobT2 fusion enzyme activity reveals mechanisms responsible for production of active form of vitamin B12 by Propionibacterium freudenreichii. Microb Cell Fact 2015;14:363–369 [CrossRef]
    [Google Scholar]
  23. Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 2013;29:2933–2935 [CrossRef][PubMed]
    [Google Scholar]
  24. Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007;35:W52–W57 [CrossRef][PubMed]
    [Google Scholar]
  25. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 2015;13:722–736 [CrossRef][PubMed]
    [Google Scholar]
  26. Murray IA, Clark TA, Morgan RD, Boitano M, Anton BP et al. The methylomes of six bacteria. Nucleic Acids Res 2012;40:11450–11462 [CrossRef][PubMed]
    [Google Scholar]
  27. Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE–a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 2015;43:D298–D299 [CrossRef][PubMed]
    [Google Scholar]
  28. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016;44:W16–W21 [CrossRef][PubMed]
    [Google Scholar]
  29. Lima-Mendez G, van Helden J, Toussaint A, Leplae R. Prophinder: a computational tool for prophage prediction in prokaryotic genomes. Bioinformatics 2008;24:863–865 [CrossRef][PubMed]
    [Google Scholar]
  30. Bertelli C, Laird MR, Williams KP, Lau BY, Hoad G et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 2017;45:W30–W35 [CrossRef][PubMed]
    [Google Scholar]
  31. van Heel AJ, de Jong A, Montalbán-López M, Kok J, Kuipers OP. BAGEL3: Automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic Acids Res 2013;41:W448–W453 [CrossRef][PubMed]
    [Google Scholar]
  32. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 2017;45:D566–D573 [CrossRef][PubMed]
    [Google Scholar]
  33. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  34. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  35. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  36. Wang Y, Coleman-Derr D, Chen G, Gu YQ. OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2015;43:W78–W84 [CrossRef][PubMed]
    [Google Scholar]
  37. de Carvalho AF, Guezenec S, Gautier M, Grimont PA. Reclassification of "Propionibacterium rubrum" as P. jensenii. Res Microbiol 1995;146:51–58 [CrossRef][PubMed]
    [Google Scholar]
  38. Xie C, Coda R, Chamlagain B, Edelmann M, Deptula P et al. In situ fortification of vitamin B12 in wheat flour and wheat bran by fermentation with Propionibacterium freudenreichii. J Cereal Sci 2018;81:133–139 [CrossRef]
    [Google Scholar]
  39. Virtanen AI. Über die Propionsäuregärung. 1925;136
  40. Virtanen AI. Über die Propionsäuregärung II. Soc Sci Fenn Coment Physico-Matematicae 1925;2:20
    [Google Scholar]
  41. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  42. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004;101:11030–11035 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002965
Loading
/content/journal/ijsem/10.1099/ijsem.0.002965
Loading

Data & Media loading...

Supplementary File 1

Supplementary File 2

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error