1887

Abstract

Two similar Penicillium isolates could not be identified as previously described species in a survey of orchard apples from Tunisia for patulin-producing fungi. These isolates are described as novel species using multilocus DNA sequence analysis of partial β-tubulin, calmodulin and nuclear ribosomal internal transcribed spacer regions; and morphological, physiological and biochemical characteristics. The isolates were considered negative for patulin production since the IDH gene fragment was not detected and the compound detected at the same retention time of patulin (14.9 min) showed a different UV spectrum using U-HPLC/UV-DAD. In terms of phylogeny, the two isolates clustered with Penicillium section Ramosa and are closely related to Penicillium chroogomphum, Penicillium lenticrescens and Penicillium soppii. Furthermore, their macro- and micromorphological traits differed from these species. Hence, the isolates represent a novel species in Penicillium section Ramosa and the name Penicillium tunisiense sp. nov. is proposed, with the type strain MUM 17.62 (=ITEM 17445).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002962
2018-08-20
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/10/3217.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002962&mimeType=html&fmt=ahah

References

  1. Rosenberger DA. Blue mold. In Jones AL, Aldwinckle HS. (editors) Compendium of Apple and Pear Diseases St. Paul, MN: American Phytopathological Society Press; 1990; pp.54–55
    [Google Scholar]
  2. Andersen B, Smedsgaard J, Frisvad JC. Penicillium expansum: consistent production of patulin, chaetoglobosins, and other secondary metabolites in culture and their natural occurrence in fruit products. J Agric Food Chem 2004;52:2421–2428 [CrossRef][PubMed]
    [Google Scholar]
  3. McKinley ER, Carlton CWW. Patulin. In Sharma RP, Salunkhe DK. (editors) Mycotoxins and Phytoalexins FL, USA: CRC Press; 1991; pp.191–236
    [Google Scholar]
  4. Puel O, Galtier P, Oswald IP. Biosynthesis and toxicological effects of patulin. Toxins 2010;2:613–631 [CrossRef][PubMed]
    [Google Scholar]
  5. Wright SAI. Patulin in food. Curr Opin Food Sci 2015;5:105–109 [CrossRef]
    [Google Scholar]
  6. Paterson RRM, Lima N. Penicillium: mycoses and mycotoxinoses. In Liu D. (editor) Molecular Detection of Human Fungal Pathogens FL, USA: CRC Press; 2011; pp.329–343
    [Google Scholar]
  7. Paterson RRM, Lima N. Toxicology of mycotoxins. In Luch A. (editor) Molecular, Clinical and Environmental Toxicology: Volume 2: Clinical Toxicology Basel: Birkhäuser Basel; 2010; pp.31–63
    [Google Scholar]
  8. Filtenborg O, Frisvad JC, Thrane U. Moulds in food spoilage. Int J Food Microbiol 1996;33:85–102 [CrossRef][PubMed]
    [Google Scholar]
  9. Frisvad JC, Samson R. Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identif cation of food and airborne terverticillate Penicillia and their mycotoxins. Stud Mycol 2004;2004:1–173
    [Google Scholar]
  10. Paterson RR, Venâncio A, Lima N. Solutions to Penicillium taxonomy crucial to mycotoxin research and health. Res Microbiol 2004;155:507–513 [CrossRef][PubMed]
    [Google Scholar]
  11. Paterson RR, Venâncio A, Lima N. A practical approach for identifications based on mycotoxin characters of Penicillium. Rev Iberoam Micol 2006;23:155–159 [CrossRef][PubMed]
    [Google Scholar]
  12. Visagie CM, Houbraken J, Frisvad JC, Hong SB, Klaassen CH et al. Identification and nomenclature of the genus Penicillium. Stud Mycol 2014;78:343–371 [CrossRef][PubMed]
    [Google Scholar]
  13. Visagie CM, Hirooka Y, Tanney JB, Whitfield E, Mwange K et al. Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Stud Mycol 2014;78:63–139 [CrossRef][PubMed]
    [Google Scholar]
  14. Rodrigues P, Venâncio A, Kozakiewicz Z, Lima N. A polyphasic approach to the identification of aflatoxigenic and non-aflatoxigenic strains of Aspergillus section Flavi isolated from Portuguese almonds. Int J Food Microbiol 2009;129:187–193 [CrossRef][PubMed]
    [Google Scholar]
  15. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  16. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  17. Gouy M, Guindon S, Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010;27:221–224 [CrossRef][PubMed]
    [Google Scholar]
  18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  19. Morales H, Paterson RR, Venâncio A, Lima N. Interaction with Penicillium expansum enhances Botrytis cinerea growth in grape juice medium and prevents patulin accumulation in vitro. Lett Appl Microbiol 2013;56:356–360 [CrossRef][PubMed]
    [Google Scholar]
  20. Simões MF, Santos C, Lima N. Structural diversity of Aspergillus (section nigri) spores. Microsc Microanal 2013;19:1151–1158 [CrossRef][PubMed]
    [Google Scholar]
  21. Kornerup A, Wanscher JH, Pavey D. Methuen Handbook of Colour New York: Hastings House; 1984
    [Google Scholar]
  22. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 2012;109:6241–6246 [CrossRef][PubMed]
    [Google Scholar]
  23. Seifert KA, Samson RA, Dewaard JR, Houbraken J, Lévesque CA et al. Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci USA 2007;104:3901–3906 [CrossRef][PubMed]
    [Google Scholar]
  24. Skouboe P, Frisvad JC, Taylor JW, Lauritsen D, Boysen M et al. Phylogenetic analysis of nucleotide sequences from the ITS region of terverticillate Penicillium species. Mycol Res 1999;103:873–881 [CrossRef]
    [Google Scholar]
  25. Rong C, Ma Y, Wang S, Liu Y, Wang L et al. Penicillium chroogomphum, a new species in Penicillium section Ramosa isolated from fruiting bodies of Chroogomphus rutilus in China. Mycoscience 2016;57:79–84 [CrossRef]
    [Google Scholar]
  26. Houbraken J, Samson RA. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud Mycol 2011;70:1–51 [CrossRef][PubMed]
    [Google Scholar]
  27. Frisvad JC, Houbraken J, Popma S, Samson RA. Two new Penicillium species Penicillium buchwaldii and Penicillium spathulatum, producing the anticancer compound asperphenamate. FEMS Microbiol Lett 2013;339:77–92 [CrossRef][PubMed]
    [Google Scholar]
  28. Pitt JI. The Genus Penicillium and Its Teleomorphic States: Eupeniccillum and Talaromyces London: Academic Press; 1979
    [Google Scholar]
  29. Frisvad JC, Larsen TO, Dalsgaard PW, Seifert KA, Louis-Seize G et al. Four psychrotolerant species with high chemical diversity consistently producing cycloaspeptide A, Penicillium jamesonlandense sp. nov., Penicillium ribium sp. nov., Penicillium soppii and Penicillium lanosum. Int J Syst Evol Microbiol 2006;56:1427–1437 [CrossRef][PubMed]
    [Google Scholar]
  30. Paterson RR. The isoepoxydon dehydrogenase gene of patulin biosynthesis in cultures and secondary metabolites as candidate PCR inhibitors. Mycol Res 2004;108:1431–1437 [CrossRef][PubMed]
    [Google Scholar]
  31. Paterson RRM, Soares C, Ouhibi S, Lima N. Alternative patulin pathway unproven. Int J Food Microbiol 2018;269:87–88 [CrossRef][PubMed]
    [Google Scholar]
  32. Frisvad JC. A critical review of producers of small lactone mycotoxins: patulin, penicillic acid and moniliformin. World Mycotoxin J 2018;11:73–100 [CrossRef]
    [Google Scholar]
  33. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 1995;61:1323–1330[PubMed]
    [Google Scholar]
  34. O’Donnell K, Nirenberg HI, Aoki T, Cigelnik E. A Multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species. Mycoscience 2000;41:61–78 [CrossRef]
    [Google Scholar]
  35. Peterson SW, Bayer EM, Wicklow DT. Penicillium thiersii, Penicillium angulare and Penicillium decaturense, new species isolated from wood-decay fungi in North America and their phylogenetic placement from multilocus DNA sequence analysis. Mycologia 2004;96:1280–1293 [CrossRef][PubMed]
    [Google Scholar]
  36. White TJ, Burns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA, Gelfand DH, Sninsky JJ, White TJ. (editors) PCR Protocols: A Guide to Methods and Applications San Diego: Academic Press; 1990; pp.315–322
    [Google Scholar]
  37. Schlick A, Kuhls K, Meyer W, Lieckfeldt E, Börner T et al. Fingerprinting reveals gamma-ray induced mutations in fungal DNA: implications for identification of patent strains of Trichoderma harzianum. Curr Genet 1994;26:74–78 [CrossRef][PubMed]
    [Google Scholar]
  38. Raper KB, Thom C. A Manual of the Penicillia Baltimore: The Williams and Wilkins Company; 1949
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002962
Loading
/content/journal/ijsem/10.1099/ijsem.0.002962
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error