1887

Abstract

A Gram-stain-negative, non-spore-forming, rod-shaped, motile bacterial strain, designated GD-2, was isolated from a sediment sample collected from a hot spring in the Tibet Autonomous Region, China. Strain GD-2 grew at a temperature range of 37–55 °C (optimum, 45–50 °C), a pH range of 5.5–11.0 (pH 7.0–7.5) and a NaCl concentration range of 0–4.0 % (0 %). The phylogenetic analysis based on 16S rRNA gene sequencing showed that strain GD-2 represented a member of the genus Thauera within the family Zoogloeaceae . Strain GD-2 was closely related to Thauera linaloolentis 47Lol with the highest 16S rRNA gene sequence similarity of 95.5 %. The whole genomic average nucleotide identity value for GD-2 and 47Lol was 75.3 %. The predominant cellular fatty acids of the strain were C16 : 0, summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c), C10 : 0 3-OH and C12 : 0. The main polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, three unidentified phospholipids and two unidentified aminolipids. The major isoprenoid quinone was ubiquinone 8. Genome sequencing revealed that the genome size of GD-2 was 3 059 321 bp with a G+C content of 63.57 mol%. On the basis of phylogenetic, phenotypic and chemotaxonomic characteristics, strain GD-2 is considered to represent a novel species of the genus Thauera , for which the name Thauera hydrothermalis sp. nov. is proposed. The type strain is GD-2 (=NBRC 112472=CGMCC 1.15527).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002960
2018-08-16
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/10/3163.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002960&mimeType=html&fmt=ahah

References

  1. Macy JM, Rech S, Auling G, Dorsch M, Stackebrandt E et al. Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration. Int J Syst Bacteriol 1993; 43:135–142 [View Article][PubMed]
    [Google Scholar]
  2. Mechichi T, Stackebrandt E, Gad'on N, Fuchs G. Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov. Arch Microbiol 2002; 178:26–35 [View Article][PubMed]
    [Google Scholar]
  3. Anders HJ, Kaetzke A, Kampfer P, Ludwig W, Fuchs G. Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740. Int J Syst Bacteriol 1995; 45:327–333
    [Google Scholar]
  4. Dubbels BL, Sayavedra-Soto LA, Bottomley PJ, Arp DJ. Thauera butanivorans sp. nov., a C2-C9 alkane-oxidizing bacterium previously referred to as 'Pseudomonas butanovora'. Int J Syst Evol Microbiol 2009; 59:1576–1578 [View Article][PubMed]
    [Google Scholar]
  5. Song B, Palleroni NJ, Kerkhof LJ, Häggblom MM. Characterization of halobenzoate-degrading, denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp. nov. Int J Syst Evol Microbiol 2001; 51:589–602 [View Article][PubMed]
    [Google Scholar]
  6. Yang GQ, Zhang J, Kwon SW, Zhou SG, Han LC et al. Thauera humireducens sp. nov., a humus-reducing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 2013; 63:873–878 [View Article][PubMed]
    [Google Scholar]
  7. Foss S, Harder J. Thauera linaloolentis sp. nov. and Thauera terpenica sp. nov., isolated on oxygen-containing monoterpenes (linalool, menthol, and eucalyptol) nitrate. Syst Appl Microbiol 1998; 21:365–373 [View Article][PubMed]
    [Google Scholar]
  8. Scholten E, Lukow T, Auling G, Kroppenstedt RM, Rainey FA et al. Thauera mechernichensis sp. nov., an aerobic denitrifier from a leachate treatment plant. Int J Syst Bacteriol 1999; 49:1045–1051 [View Article][PubMed]
    [Google Scholar]
  9. Pal D, Bhardwaj A, Sudan SK, Kaur N, Kumari M et al. Thauera propionica sp. nov., isolated from downstream sediment sample of the river Ganges, Kanpur, India. Int J Syst Evol Microbiol 2018; 68:341–346 [View Article][PubMed]
    [Google Scholar]
  10. Boden R, Hutt LP, Rae AW. Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the 'Proteobacteria', and four new families within the orders Nitrosomonadales and Rhodocyclales. Int J Syst Evol Microbiol 2017; 67:1191–1205 [View Article][PubMed]
    [Google Scholar]
  11. Allen MB. Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Arch Mikrobiol 1959; 32:270–277 [View Article][PubMed]
    [Google Scholar]
  12. Hucker GJ. A new modification and application of the gram stain. J Bacteriol 1921; 6:395–397[PubMed]
    [Google Scholar]
  13. Cerny G. Studies on the aminopeptidase test for the distinction of gram-negative from gram-positive bacteria. Europ J Appl Microbiol Biotechnol 1978; 5:113–122
    [Google Scholar]
  14. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703[PubMed]
    [Google Scholar]
  15. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  16. Collins M. Isoprenoid quinone analysis in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp. 267–287
    [Google Scholar]
  17. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989; 16:176–178
    [Google Scholar]
  18. Kamekura M. Lipids of extreme halophiles. In Vreeland R, Hochstein L. (editors) The Biology of Halophilic Bacteria Boca Raton: CRC Press; 1993 pp. 135–161
    [Google Scholar]
  19. Minnikin D, O'Donnell A, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241
    [Google Scholar]
  20. Zhang D, Yang H, Zhang W, Huang Z, Liu SJ. Rhodocista pekingensis sp. nov., a cyst-forming phototrophic bacterium from a municipal wastewater treatment plant. Int J Syst Evol Microbiol 2003; 53:1111–1114 [View Article][PubMed]
    [Google Scholar]
  21. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962; 5:109–118[PubMed]
    [Google Scholar]
  22. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74:5463–5467 [View Article][PubMed]
    [Google Scholar]
  23. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74:2461–2470 [View Article][PubMed]
    [Google Scholar]
  24. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  25. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882[PubMed]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  27. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376[PubMed]
    [Google Scholar]
  28. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416
    [Google Scholar]
  29. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  30. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  31. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  32. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  33. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  34. Takahashi J, Ichkawa Y, Sagae H, Komura I, Kanou H et al. Isolation and identification of n-butane-assimilating bacterium. J Agric chem Soc Japan 1980; 44:1835–1840
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002960
Loading
/content/journal/ijsem/10.1099/ijsem.0.002960
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error