1887

Abstract

A Gram-stain-negative bacterium, designated NH169-3, was isolated from a surface seawater sample of the South China Sea and subjected to a taxonomic polyphasic investigation. Strain NH169-3 was strictly aerobic, non-motile, non-spore-forming and rod-shaped. The colony was 1.0–2.0 mm in diameter after the growth on marine agar at 30 °C for 72 h. The centre of the colony was smooth, circular, convex and brown with a transparent periphery. Strain NH169-3 was able to grow at temperatures between 4–40 °C (optimum, 37 °C), pH 5.5–9.0 (pH 7.5) and with 0–12.5 % (w/v) NaCl (3.0 %). Chemotaxonomic analysis showed that the sole respiratory quinone of strain NH169-3 was ubiquinone 9; major fatty acids were C16 : 0 and C18 : 1 ω9c, and major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and one unidentified glycolipid. The DNA G+C content was 52.7 mol%. The comparison of 16S rRNA gene sequences showed that strain NH169-3 was closely related to Marinobacter shengliensis SL013A34A2 with a similarity of 98.0 %. Three phylogenetic trees reconstructed with neighbour-joining, maximum-parsimony and maximum-likelihood methods using 16S rRNA gene sequences showed that strain NH169-3 was grouped into a separated branch with M. shengliensis SL013A34A2 in a clade of the genus Marinobacter and closely related to Marinobacter halophilus JCM 30472, Marinobacter vinifirmus DSM 17747 and Marinobacter hydrocarbonoclasticus DSM 8798. Analyses of both phenotypic and phylogenetic properties have suggested that strain NH169-3 was distinctive from species with validly published names in genus Marinobacter . Thus, strain NH169-3 (=MCCC 1K03455=KCTC 62226) is proposed as a novel species in genus Marinobacter with the name Marinobacter fuscus sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002956
2018-08-10
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/10/3156.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002956&mimeType=html&fmt=ahah

References

  1. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M et al. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 1992;42:568–576 [CrossRef][PubMed]
    [Google Scholar]
  2. Huo YY, Wang CS, Yang JY, Wu M, Xu XW. Marinobacter mobilis sp. nov. and Marinobacter zhejiangensis sp. nov., halophilic bacteria isolated from the East China Sea. Int J Syst Evol Microbiol 2008;58:2885–2889 [CrossRef][PubMed]
    [Google Scholar]
  3. Romanenko LA, Schumann P, Rohde M, Zhukova NV, Mikhailov VV et al. Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. Int J Syst Evol Microbiol 2005;55:143–148 [CrossRef][PubMed]
    [Google Scholar]
  4. Rani S, Koh HW, Kim H, Rhee SK, Park SJ. Marinobacter salinus sp. nov., a moderately halophilic bacterium isolated from a tidal flat environment. Int J Syst Evol Microbiol 2017;67:205–211
    [Google Scholar]
  5. Luo YJ, Xie BS, Lv XL, Cai M, Wang YN et al. Marinobacter shengliensis sp. nov., a moderately halophilic bacterium isolated from oil-contaminated saline soil. Antonie van Leeuwenhoek 2015;107:1085–1094 [CrossRef][PubMed]
    [Google Scholar]
  6. Bagheri M, Amoozegar MA, Didari M, Makhdoumi-Kakhki A, Schumann P et al. Marinobacter persicus sp. nov., a moderately halophilic bacterium from a saline lake in Iran. Antonie van Leeuwenhoek 2013;104:47–54 [CrossRef][PubMed]
    [Google Scholar]
  7. Zhong ZP, Liu Y, Liu HC, Wang F, Zhou YG et al. Marinobacter halophilus sp. nov., a halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2015;65:2838–2845 [CrossRef][PubMed]
    [Google Scholar]
  8. Liebgott PP, Casalot L, Paillard S, Lorquin J, Labat M. Marinobacter vinifirmus sp. nov., a moderately halophilic bacterium isolated from a wine-barrel-decalcification wastewater. Int J Syst Evol Microbiol 2006;56:2511–2516 [CrossRef][PubMed]
    [Google Scholar]
  9. Shieh WY, Jean WD, Lin YT, Tseng M. Marinobacter lutaoensis sp. nov., a thermotolerant marine bacterium isolated from a coastal hot spring in Lutao, Taiwan. Can J Microbiol 2003;49:244–252 [CrossRef][PubMed]
    [Google Scholar]
  10. Rani S, Koh HW, Kim H, Rhee SK, Park SJ. Marinobacter salinus sp. nov., a moderately halophilic bacterium isolated from a tidal flat environment. Int J Syst Evol Microbiol 2017;67:205–211 [CrossRef][PubMed]
    [Google Scholar]
  11. Miklaszewska M, Dittrich-Domergue F, Banaś A, Domergue F. Wax synthase MhWS2 from Marinobacter hydrocarbonoclasticus: substrate specificity and biotechnological potential for wax ester production. Appl Microbiol Biotechnol 2018;102:4063–4074 [CrossRef][PubMed]
    [Google Scholar]
  12. Zheng N, Ding N, Gao P, Han M, Liu X et al. Diverse algicidal bacteria associated with harmful bloom-forming Karenia mikimotoi in estuarine soil and seawater. Sci Total Environ 2018;631-632:1415–1420 [CrossRef][PubMed]
    [Google Scholar]
  13. Fernandes SO, Surya Prakash L, Balan Binish M, Padinchati Krishnan K, John Kurian P. Changes in morphology and metabolism enable Mn-oxidizing bacteria from mid-oceanic ridge environment to counter metal-induced stress. J Basic Microbiol 2018;58:390–402 [CrossRef][PubMed]
    [Google Scholar]
  14. Williams ST, Davies FL. Use of antibiotics for selective isolation and enumeration of actinomycetes in soil. J Gen Microbiol 1965;38:251–261 [CrossRef][PubMed]
    [Google Scholar]
  15. Zhang XQ, Wu YH, Zhou X, Zhang X, Xu XW et al. Parvularcula flava sp. nov., an alphaproteobacterium isolated from surface seawater of the South China Sea. Int J Syst Evol Microbiol 2016;66:3498–3502 [CrossRef][PubMed]
    [Google Scholar]
  16. Shi XL, Wu YH, Jin XB, Wang CS, Xu XW. Alteromonas lipolytica sp. nov., a poly-beta-hydroxybutyrate-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol 2017;67:237–242 [CrossRef][PubMed]
    [Google Scholar]
  17. Sun C, Wang RJ, Su Y, Fu GY, Zhao Z et al. Hyphobacterium vulgare gen. nov., sp. nov., a novel alphaproteobacterium isolated from seawater. Int J Syst Evol Microbiol 2017;67:1169–1176 [CrossRef][PubMed]
    [Google Scholar]
  18. Sun C, Huo YY, Liu JJ, Pan J, Qi YZ et al. Thalassomonas eurytherma sp. nov., a marine proteobacterium. Int J Syst Evol Microbiol 2014;64:2079–2083 [CrossRef][PubMed]
    [Google Scholar]
  19. Farmer III JJ, Janda JM, Brenner FW, Cameron DN, Birkhead KM et al. Genus I. ibrio Pacini 1854, 411AL. In Garrity GM, Brenner DJ, Krieg NR, Staley JT. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed.vol. 2 The Proteobacteria, Part B, The Gammaproteobacteria New York: Springer; 2005; pp.494–546
    [Google Scholar]
  20. Baumann P, Baumann L, Mandel M. Taxonomy of marine bacteria: the genus Beneckea. J Bacteriol 1971;107:268–294[PubMed]
    [Google Scholar]
  21. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963;85:1183–1184[PubMed]
    [Google Scholar]
  22. Yh W, Xu L, Zhou P, Wang CS, Oren A et al. Brevirhabdus pacifica gen. nov., sp. nov., isolated from deep-sea sediment in a hydrothermal vent field. Int J Syst Evol Microbiol 2015;64:3645–3651
    [Google Scholar]
  23. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  24. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207
    [Google Scholar]
  25. Xu XW, Wu YH, Zhou Z, Wang CS, Zhou YG et al. Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 2007;57:1619–1624 [CrossRef][PubMed]
    [Google Scholar]
  26. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  27. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  28. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  29. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007;35:7188–7196 [CrossRef][PubMed]
    [Google Scholar]
  30. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  31. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  32. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  33. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  34. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  35. Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S et al. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res 2017;27:768–777 [CrossRef][PubMed]
    [Google Scholar]
  36. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25:1043–1055 [CrossRef][PubMed]
    [Google Scholar]
  37. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35:3100–3108 [CrossRef][PubMed]
    [Google Scholar]
  38. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75 [CrossRef][PubMed]
    [Google Scholar]
  39. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  40. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  41. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  42. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  43. Moore L, Moore E, Murray R, Stackebrandt E, Starr M. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002956
Loading
/content/journal/ijsem/10.1099/ijsem.0.002956
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error