1887

Abstract

Root-nodule bacteria were isolated from wild legumes growing in the Kavango region, Namibia. Using a polyphasic approach, four strains belonging to the genus Bradyrhizobium (WR4, WR87, T10 and T12) were further characterized to clarify the taxonomic status of this group. On the basis of 16S rRNA gene sequences, the four strains showed highest similarity to Bradyrhizobium elkanii USDA 76 (99.9 %), Bradyrhizobium pachyrhizi PAC48 (identical) and to Bradyrhizobium brasilense UFLA03-321 (identical). Multilocus sequence analysis of concatenated glnII-recA-gyrB-dnaK-rpoB sequences and comparison of the intergenic transcribed spacer (ITS) sequences confirmed that the novel group belongs to a distinct lineage of the genus Bradyrhizobium , with <96.7 % (MLSA) and 97.25 % (ITS) nucleotide identity with B. elkanii USDA 76. Results from the sequence-based analysis were validated by DNA–DNA hybridization experiments and suggested a novel species. Several phenotypic features including carbon compound utilization and growth characteristics supported the phylogenetic data, thus it is concluded that the strains represent a novel species, for which the name Bradyrhizobium ripae sp. nov. is proposed, with type strain WR4 [LMG 30283, DSM 105795, NTCCM 0019 (Windhoek)].

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002955
2018-09-24
2019-09-15
Loading full text...

Full text loading...

References

  1. Pröpper M, Gröngröft A, Falk T, Eschenbach A, Fox T et al. Causes and perspectives of land-cover change through expanding cultivation in Kavango. In Jürgens N, Schmiedel U, Hoffman T. (editors) Biodiversity in Southern Africa 3: Implications for Landuse and Management Göttingen, Windhoek: Klaus Hess; 2010; pp.2–31
    [Google Scholar]
  2. Mpepereki S, Pompi I. Promoting new BNF technologies among smallholder farmers: a success story from Zimbabwe. 2003
  3. Ahmad MH, Uddin MR, McLaughlin W. Characterization of indigenous rhizobia from wild legumes. FEMS Microbiol Lett 1984;24:197–203 [CrossRef]
    [Google Scholar]
  4. Allen ON, Allen EK. (editors) The Leguminosae. A Source Book of Characteristics, Uses and Nodulation London: Macmillan Publishers Ltd; 1981
    [Google Scholar]
  5. van Wyk BE, Gericke N. People's Plants: a Guide to Useful Plants of Soutern Africa 2000; pp.351
    [Google Scholar]
  6. Grönemeyer JL, Kulkarni A, Berkelmann D, Hurek T, Reinhold-Hurek B. Identification and characterization of rhizobia indigenous to the Okavango region in Sub-Saharan Africa. Appl Environ Microbiol 2014;80:7244–7257
    [Google Scholar]
  7. van Berkum P. Evidence for a third uptake hydrogenase phenotype among the soybean Bradyrhizobia. Appl Environ Microbiol 1990;56:3835–3841[PubMed]
    [Google Scholar]
  8. Grönemeyer JL, Burbano CS, Hurek T, Reinhold-Hurek B. Isolation and characterization of root-associated bacteria from agricultural crops in the Kavango region of Namibia. Plant Soil 2012;356:67–82 [CrossRef]
    [Google Scholar]
  9. Laguerre G, Mavingui P, Allard MR, Charnay MP, Louvrier P et al. Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Appl Environ Microbiol 1996;62:2029–2036[PubMed]
    [Google Scholar]
  10. Sarita S, Sharma PK, Priefer UB, Prell J. Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol Ecol 2005;54:1–11 [CrossRef][PubMed]
    [Google Scholar]
  11. Vinuesa P, Silva C, Werner D, Martínez-Romero E. Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 2005;34:29–54 [CrossRef][PubMed]
    [Google Scholar]
  12. Stepkowski T, Hughes CE, Law IJ, Markiewicz Ł, Gurda D et al. Diversification of lupine Bradyrhizobium strains: evidence from nodulation gene trees. Appl Environ Microbiol 2007;73:3254–3264 [CrossRef][PubMed]
    [Google Scholar]
  13. Stepkowski T, Moulin L, Krzyzańska A, McInnes A, Law IJ et al. European origin of Bradyrhizobium populations infecting lupins and serradella in soils of Western Australia and South Africa. Appl Environ Microbiol 2005;71:7041–7052 [CrossRef][PubMed]
    [Google Scholar]
  14. Vinuesa P, Rojas-Jiménez K, Contreras-Moreira B, Mahna SK, Prasad BN et al. Multilocus sequence analysis for assessment of the biogeography and evolutionary genetics of four Bradyrhizobium species that nodulate soybeans on the asiatic continent. Appl Environ Microbiol 2008;74:6987–6996 [CrossRef][PubMed]
    [Google Scholar]
  15. Martens M, Delaere M, Coopman R, De Vos P, Gillis M et al. Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol 2007;57:489–503 [CrossRef][PubMed]
    [Google Scholar]
  16. Rivas R, Martens M, de Lajudie P, Willems A. Multilocus sequence analysis of the genus Bradyrhizobium. Syst Appl Microbiol 2009;32:101–110 [CrossRef][PubMed]
    [Google Scholar]
  17. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  18. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  20. Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics 1998;14:817–818 [CrossRef][PubMed]
    [Google Scholar]
  21. Willems A, Munive A, de Lajudie P, Gillis M. In most Bradyrhizobium groups sequence comparison of 16S-23S rDNA internal transcribed spacer regions corroborates DNA-DNA hybridizations. Syst Appl Microbiol 2003;26:203–210 [CrossRef][PubMed]
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  23. Menna P, Barcellos FG, Hungria M. Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnII, recA, atpD and dnaK genes. Int J Syst Evol Microbiol 2009;59:2934–2950 [CrossRef][PubMed]
    [Google Scholar]
  24. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;33:152–155
    [Google Scholar]
  25. Vinuesa P, León-Barrios M, Silva C, Willems A, Jarabo-Lorenzo A et al. Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 2005;55:569–575 [CrossRef][PubMed]
    [Google Scholar]
  26. Tighe SW, de Lajudie P, Dipietro K, Lindström K, Nick G et al. Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 2000;50:787–801 [CrossRef][PubMed]
    [Google Scholar]
  27. Martins da Costa E, Azarias Guimarães A, Pereira Vicentin R, de Almeida Ribeiro PR, Ribas Leão AC et al. Bradyrhizobium brasilense sp. nov., a symbiotic nitrogen-fixing bacterium isolated from Brazilian tropical soils. Arch Microbiol 2017;199:1211–1221 [CrossRef][PubMed]
    [Google Scholar]
  28. Leite J, Passos SR, Simões-Araújo JL, Rumjanek NG, Xavier GR et al. Genomic identification and characterization of the elite strains Bradyrhizobium yuanmingense BR 3267 and Bradyrhizobium pachyrhizi BR 3262 recommended for cowpea inoculation in Brazil. Braz J Microbiol 2017; [CrossRef][PubMed]
    [Google Scholar]
  29. Boumahdi M, Mary P, Hornez JP. Changes in fatty acid composition and degree of unsaturation of (brady)rhizobia as a response to phases of growth, reduced water activities and mild desiccation. Antonie van Leeuwenhoek 2001;79:73–79 [CrossRef][PubMed]
    [Google Scholar]
  30. Vincent JM. A Manual for the Practical Study of the Root Nodule Bacteria Oxford, UK: Blackwell Scientific Publications, Ltd; 1970
    [Google Scholar]
  31. Lasse Grönemeyer J, Hurek T, Reinhold-Hurek B. Bradyrhizobium kavangense sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of traditional Namibian pulses. Int J Syst Evol Microbiol 2015;65:4886–4894 [CrossRef][PubMed]
    [Google Scholar]
  32. Gordon SA, Weber RP. Colorimetric estimation of indoleacetic acid. Plant Physiol 1951;26:192–195 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002955
Loading
/content/journal/ijsem/10.1099/ijsem.0.002955
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error