1887

Abstract

A novel bacterium, designated strain L28, was isolated from the rhizosphere soil of a mangrove plant in Hong Kong. Cells of strain L28 are Gram-stain-positive, rod-shaped and endospore-forming. Optimum growth occurs at 37 °C (range, 20–45 °C), 0.5 % (w/v) NaCl (range, 0–5.0 %) and pH 7.5 (range, 6.5–9.0). The major fatty acids are iso-C15 : 0 and C16 : 1ω7c alcohol. The major respiratory quinone is MK-7. The polar lipid profile comprises phospholipid, phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol and two unidentified lipids. The 16S rRNA gene sequence analyses indicated that strain L28 exhibited the highest similarity of 96.7 % to Bacillus asahii MA001. The genome size of strain L28 was 4 063 863 bp with a 36.9 mol% DNA G+C content. Based on the phenotypic and chemotaxonomic properties, along with the phylogenic distinctiveness, it was concluded that this strain represents a novel species of the genus Bacillus , for which the name Bacillus acanthi sp. nov. is proposed. The type strain of this novel species is L28 (=DSM 104296=MCCC 1K03287).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002950
2018-07-31
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/9/3047.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002950&mimeType=html&fmt=ahah

References

  1. Parte AC. LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  2. Claus D, Berkeley RCW. Genus Bacillus Cohn 1872. In Bergey’s Manual of Systematic Bacteriologyvol. 2 1986; pp.1105–1139
    [Google Scholar]
  3. Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 2005;56:845–857 [CrossRef][PubMed]
    [Google Scholar]
  4. Ferré J, Escriche B, Bel Y, Rie JV. Biochemistry and genetics of insect resistance to Bacillus thuringiensis insecticidal crystal proteins. Annu Rev Entomol 2002;47:501
    [Google Scholar]
  5. Huang X, Zhang N, Yong X, Yang X, Shen Q. Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43. Microbiol Res 2012;167:135–143 [CrossRef][PubMed]
    [Google Scholar]
  6. Vahabi A, Ramezanianpour AA, Akbari Noghabi K. A preliminary insight into the revolutionary new line in improving concrete properties using an indigenous bacterial strain Bacillus licheniformis AK01, as a healing agent. Eur J Environ Civ Eng 2015;19:614–627 [CrossRef]
    [Google Scholar]
  7. Romeh AA, Hendawi MY. Bioremediation of certain organophosphorus pesticides by two biofertilizers, Paenibacillus (Bacillus) polymyxa (Prazmowski) and Azospirillum lipoferum (Beijerinck). J Agric Sci Technol 2014;16:265–276
    [Google Scholar]
  8. Duke NC, Meynecke JO, Dittmann S, Ellison AM, Anger K et al. A world without mangroves?. Science 2007;317:41–42 [CrossRef][PubMed]
    [Google Scholar]
  9. Sahoo K, Dhal N. Potential microbial diversity in mangrove ecosystems: a review. Indian J Mar Sci 2009;38:249–256
    [Google Scholar]
  10. Liu S, Tang W, Yang F, Meng J, Chen W et al. Influence of biochar application on potassium-solubilizing Bacillus mucilaginosus as potential biofertilizer. Prep Biochem Biotechnol 2017;47:32–37 [CrossRef][PubMed]
    [Google Scholar]
  11. Nasr S, Mohammadimehr M, Geranpayeh Vaghei M, Amoozegar MA, Shahzadeh Fazeli SA et al. Jaminaea pallidilutea sp. nov. (Microstromatales), a basidiomycetous yeast isolated from plant material of mangrove forests in Iran. Int J Syst Evol Microbiol 2017;67:4405–4408 [CrossRef][PubMed]
    [Google Scholar]
  12. Law JW, Ser HL, Duangjai A, Saokaew S, Bukhari SI et al. Streptomyces colonosanans sp. nov., a novel actinobacterium isolated from Malaysia mangrove soil exhibiting antioxidative activity and cytotoxic potential against human colon cancer cell lines. Front Microbiol 2017;8:877 [CrossRef][PubMed]
    [Google Scholar]
  13. Gupta V, Singh PK, Korpole S, Tanuku NRS, Pinnaka AK et al. Bacillus mangrovi sp. nov., isolated from a sediment sample from a mangrove forest. Int J Syst Evol Microbiol 2017;67:2219–2224 [CrossRef][PubMed]
    [Google Scholar]
  14. Xie QY, Ren J, Li L, Li Y, Deng ZX et al. Micromonospora mangrovi sp. nov., isolated from mangrove soil. Antonie van Leeuwenhoek 2016;109:483–491 [CrossRef][PubMed]
    [Google Scholar]
  15. Dong XZ, Cai MY. Chapter 14. Determination of biochemical characteristics. In Manual for the Systematic Identification of General Bacteria Beijing: Science Press; 2001; pp.370–398
    [Google Scholar]
  16. Smibert RM, Krieg NR. (editors) Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  17. Liang X, Lin H, Wang K, Liao Y, Lai Q et al. Altererythrobacter salegens sp. nov., a slightly halophilic bacterium isolated from surface sediment. Int J Syst Evol Microbiol 2017;67:909–913 [CrossRef][PubMed]
    [Google Scholar]
  18. Marmur J. A procedure for the isolation of DNA from microorganism. J Mol Biol 1961;3:208–218
    [Google Scholar]
  19. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acids Techniques in Bacterial Systematics Chichester: John Wiley & Sons; 1991; pp.115–147
    [Google Scholar]
  20. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  21. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  22. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406 [CrossRef][PubMed]
    [Google Scholar]
  24. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  25. Rzhetsky A, Nei M. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992;35:367–375 [CrossRef][PubMed]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  27. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–2120 [CrossRef][PubMed]
    [Google Scholar]
  28. Xie Y, Wu G, Tang J, Luo R, Patterson J et al. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 2014;30:1660–1666 [CrossRef][PubMed]
    [Google Scholar]
  29. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark,DE: MIDI Inc; 1990
    [Google Scholar]
  30. Collins MD. Analysis of Isoprenoid Quinones. Methods Microbiol 1985;18:329–366
    [Google Scholar]
  31. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  32. Heyrman J, Vanparys B, Logan NA, Balcaen A, Rodríguez-Díaz M et al. Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the Drentse A grasslands. Int J Syst Evol Microbiol 2004;54:47–57 [CrossRef][PubMed]
    [Google Scholar]
  33. Yumoto I, Hirota K, Yamaga S, Nodasaka Y, Kawasaki T et al. Bacillus asahii sp. nov., a novel bacterium isolated from soil with the ability to deodorize the bad smell generated from short-chain fatty acids. Int J Syst Evol Microbiol 2004;54:1997–2001 [CrossRef][PubMed]
    [Google Scholar]
  34. Ash C, Farrow JA, Dorsch M, Stackebrandt E, Collins MD. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol 1991;41:343–346 [CrossRef][PubMed]
    [Google Scholar]
  35. Heyrman J, Logan NA, Rodríguez-Díaz M, Scheldeman P, Lebbe L et al. Study of mural painting isolates, leading to the transfer of 'Bacillus maroccanus' and 'Bacillus carotarum' to Bacillus simplex, emended description of Bacillus simplex, re-examination of the strains previously attributed to 'Bacillus macroides' and description of Bacillus muralis sp. nov. Int J Syst Evol Microbiol 2005;55:119–131 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002950
Loading
/content/journal/ijsem/10.1099/ijsem.0.002950
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error