Glycomyces dulcitolivorans sp. nov., isolated from rhizosphere soil of wheat (Triticum aestivum L.) Free

Abstract

A novel actinomycete, designated strain SJ-25, was isolated from rhizosphere soil of wheat (Triticumaestivum L.) and characterized using a polyphasic approach. 16S rRNA gene sequence analysis indicated that strain SJ-25 belonged to the genus Glycomyces and was closely related to Glycomyces scopariae YIM 56256 (99.0 % 16S rRNA gene sequence similarity), Glycomyces artemisiae IXS4 (98.8 %), Glycomyces sambucus E71 (98.7 %) and Glycomyces mayteni YIM 61331 (98.4 %). Moreover, key morphological and chemotaxonomic properties also confirmed the affiliation of strain SJ-25 to the genus Glycomyces . The cell wall contained meso-diaminopimelic acid and the whole-cell hydrolysates contained galactose, glucose and xylose. The phospholipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol mannoside, glycolipid and two unidentified polar lipids. The menaquinones were MK-11, MK-10(H4) and MK-10(H2). Major fatty acids were iso-C16 : 0, anteiso-C15 : 0, iso-C15 : 0, anteiso-C17 : 0 and iso-C14 : 0. The DNA G+C content was 72.2 mol%. The combination of DNA–DNA hybridization results and some phenotypic characteristics demonstrated that strain SJ-25 could be distinguished from its closely related strains. Therefore, it is proposed that strain SJ-25 represents a novel species of the genus Glycomyces , for which the name Glycomyces dulcitolivorans sp. nov. is proposed. The type strain is SJ-25 (=CGMCC 4.7414=DSM 105121).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002948
2018-07-31
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/9/3034.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002948&mimeType=html&fmt=ahah

References

  1. Labeda DP, Testa RT, Lechevalier MP, Lechevalier HA. Glycomyces, a new genus of the Actinomycetales. Int J Syst Bacteriol 1985; 35:417–421 [View Article]
    [Google Scholar]
  2. Labeda DP, Kroppenstedt RM. Emended description of the genus Glycomyces and description of Glycomyces algeriensis sp. nov., Glycomyces arizonensis sp. nov. and Glycomyces lechevalierae sp. nov. Int J Syst Evol Microbiol 2004; 54:2343–2346 [View Article][PubMed]
    [Google Scholar]
  3. Li W, Liu C, Guo X, Song W, Sun T et al. Glycomyces tritici sp. nov., isolated from rhizosphere soil of wheat (Triticum aestivum L.) and emended description of the genus Glycomyces. Antonie van Leeuwenhoek 2018; 111:1–7 [View Article][PubMed]
    [Google Scholar]
  4. Fang XM, Bai JL, Su J, Zhao LL, Liu HY et al. Glycomyces paridis sp. nov., isolated from the medicinal plant Paris polyphylla. Int J Syst Evol Microbiol 2018; 68:1578–1583 [View Article][PubMed]
    [Google Scholar]
  5. Zhang YG, Wang HF, Alkhalifah DHM, Xiao M, Zhou XK et al. Glycomyces anabasis sp. nov., a novel endophytic actinobacterium isolated from roots of Anabasis aphylla L. Int J Syst Evol Microbiol 2018; 68:1285–1290 [View Article][PubMed]
    [Google Scholar]
  6. Guan TW, Xiang HP, Wang PH, Tian L, Tang SK et al. Glycomyces xinjiangensis sp. nov., a novel actinomycete isolated from a hypersaline habitat. Arch Microbiol 2017; 199:1231–1235 [View Article][PubMed]
    [Google Scholar]
  7. Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci 2012; 17:478–486 [View Article][PubMed]
    [Google Scholar]
  8. Bulgarelli D, Schlaeppi K, Spaepen S, ver Loren van Themaat E, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 2013; 64:807–838 [View Article][PubMed]
    [Google Scholar]
  9. Hayakawa M, Nonomura H. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 1987; 65:501–509 [View Article]
    [Google Scholar]
  10. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  11. Waksman SA. The Actinomycetes. A Summary of Current Knowledge New York: Ronald; 1967
    [Google Scholar]
  12. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949; 57:141–145[PubMed]
    [Google Scholar]
  13. Waksman SA. The Actinomycetes, Vol. 2, Classification, Identification and Descriptions of Genera and Species Baltimore: Williams and Wilkins; 1961
    [Google Scholar]
  14. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color-Name Charts Illustrated with Centroid Colors Published in US 1964
    [Google Scholar]
  15. Jia F, Liu C, Wang X, Zhao J, Liu Q et al. Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Antonie van Leeuwenhoek 2013; 103:399–408 [View Article][PubMed]
    [Google Scholar]
  16. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  17. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  18. Yokota A, Tamura T, Hasegawa T, Huang LH. Catenuloplanes japonicas gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 1993; 43:805–812 [View Article]
    [Google Scholar]
  19. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 2000; 30:178–182 [View Article][PubMed]
    [Google Scholar]
  20. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. (editors) Actinomycete Taxonomy (Special Publication) vol. 6 Arlington: Society of Industrial Microbiology; 1980 pp. 227–291
    [Google Scholar]
  21. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  22. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp. 267–284
    [Google Scholar]
  23. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology [English translation of Microbiology (Beijing)] 1989; 16:176–178
    [Google Scholar]
  24. Gao R, Liu C, Zhao J, Jia F, Yu C et al. Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie Van Leeuwenhoek 2014; 105:307–315 [View Article][PubMed]
    [Google Scholar]
  25. Xiang W, Liu C, Wang X, Du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011; 61:1165–1169 [View Article][PubMed]
    [Google Scholar]
  26. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S et al. Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 2000; 50:2031–2036 [View Article][PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  29. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  31. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  32. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  33. Mandel M, Marmur J. Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 1968; 12B:195–206
    [Google Scholar]
  34. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  35. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4:184–192 [View Article][PubMed]
    [Google Scholar]
  36. Thomas EA, Alvarez CE, Sutcliffe JG. Evolutionarily distinct classes of S27 ribosomal proteins with differential mRNA expression in rat hypothalamus. J Neurochem 2000; 74:2259–2267 [View Article][PubMed]
    [Google Scholar]
  37. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464
    [Google Scholar]
  38. Qin S, Chen HH, Klenk HP, Zhao GZ, Li J et al. Glycomyces scopariae sp. nov. and Glycomyces mayteni sp. nov., isolated from medicinal plants in China. Int J Syst Evol Microbiol 2009; 59:1023–1027 [View Article][PubMed]
    [Google Scholar]
  39. Zhang X, Ren K, du J, Liu H, Zhang L. Glycomyces artemisiae sp. nov., an endophytic actinomycete isolated from the roots of Artemisia argyi. Int J Syst Evol Microbiol 2014; 64:3492–3495 [View Article][PubMed]
    [Google Scholar]
  40. Gu Q, Zheng W, Huang Y. Glycomyces sambucus sp. nov., an endophytic actinomycete isolated from the stem of Sambucus adnata wall. Int J Syst Evol Microbiol 2007; 57:1995–1998 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002948
Loading
/content/journal/ijsem/10.1099/ijsem.0.002948
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed