1887

Abstract

Phylogenetic analysis was performed on a cellulose-producing strain, designated WE7, isolated from contaminated coconut milk. The analysis utilized nearly complete 16S rRNA gene sequences, as well as concatenated partial sequences of the housekeeping genes dnaK, groEL and rpoB, and allowed identification of the strain as belonging to the genus Komagataeibacter . DNA–DNA correlation or average nucleotide identity analysis was performed between WE7 and its closest phylogenetic neighbours, and the resulting values were below the species level (<70 % and <95 %), suggesting that the strain represents a novel species in genus Komagataeibacter. Strain WE7 was coupled with Komagataeibacter species more tightly than with Gluconacetobacter species in a 16S rRNA gene sequence phylogenetic tree. Strain WE7 can be differentiated from closely related Komagataeibacter and Gluconacetobacter entanii species by the ability to grow on the carbon sources d-mannitol, sodium d-gluconate and glycerol, the ability to form acid by d-fructose, sucrose, d-mannitol, d-galactose and ethanol, and the ability to grow without acetic acid. The major fatty acid of WE7 is C18 : 1ω9c (52.3 %). The DNA G+C content of WE7 is 63.2 mol%. The name Komagataeibacter cocois sp. nov. is proposed, with the type strain WE7 (=CGMCC 1.15338=JCM 31140).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002947
2018-08-22
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/10/3125.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002947&mimeType=html&fmt=ahah

References

  1. Vandamme EJ, de Baets S, Vanbaelen A, Joris K, de Wulf P. Improved production of bacterial cellulose and its application potential. Polym Degrad Stab 1998;59:93–99 [CrossRef]
    [Google Scholar]
  2. Deppenmeier U, Hoffmeister M, Prust C. Biochemistry and biotechnological applications of Gluconobacter strains. Appl Microbiol Biotechnol 2002;60:233–242 [CrossRef][PubMed]
    [Google Scholar]
  3. Yamada Y, Yukphan P. Genera and species in acetic acid bacteria. Int J Food Microbiol 2008;125:15–24 [CrossRef][PubMed]
    [Google Scholar]
  4. Yamada Y, Yukphan P, H t l V, Muramatsu Y, Ochaikul D et al. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2013;63:1–5
    [Google Scholar]
  5. Schüller G, Hertel C, Hammes WP. Gluconacetobacter entanii sp. nov., isolated from submerged high-acid industrial vinegar fermentations. Int J Syst Evol Microbiol 2000;50:2013–2020 [CrossRef][PubMed]
    [Google Scholar]
  6. Yamada Y, Yukphan P, Lan Vu HT, Muramatsu Y, Ochaikul D et al. Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol 2012;58:397–404 [CrossRef][PubMed]
    [Google Scholar]
  7. Dellaglio F, Cleenwerck I, Felis GE, Engelbeen K, Janssens D et al. Description of Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov., isolated from Italian apple fruit. Int J Syst Evol Microbiol 2005;55:2365–2370 [CrossRef][PubMed]
    [Google Scholar]
  8. Gosselé F, Swings J, Mossel DA, de Ley J. Identification of Acetobacter strains isolated from spoiled lactic acid fermented meat food for pets. Antonie van Leeuwenhoek 1984;50:269–274 [CrossRef][PubMed]
    [Google Scholar]
  9. Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T et al. Identification of Acetobacter strains isolated from Indonesian sources, and proposals of Acetobacter syzygii sp. nov., Acetobacter cibinongensis sp. nov., and Acetobacter orientalis sp. nov. J Gen Appl Microbiol 2001;47:119–131 [CrossRef][PubMed]
    [Google Scholar]
  10. Nguyen VT, Flanagan B, Mikkelsen D, Ramirez S, Rivas L et al. Spontaneous mutation results in lower cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Carbohydr Polym 2010;80:337–343 [CrossRef]
    [Google Scholar]
  11. Toyosaki H, Kojima Y, Tsuchida T, Hoshino KEN-I, Yamada Y et al. The characterization of an acetic acid bacterium useful for producingbacterial cellulose in agitation cultures: The proposal of Acetobacter xylinum subsp. sucrofermentans subsp. nov. J Gen Appl Microbiol 1995;41:307–314 [CrossRef]
    [Google Scholar]
  12. Aydın YA, Aksoy ND. Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A. Appl Microbiol Biotechnol 2014;98:1065–1075 [CrossRef][PubMed]
    [Google Scholar]
  13. Yamada Y. Transfer of Gluconacetobacter kakiaceti, Gluconacetobacter medellinensis and Gluconacetobacter maltaceti to the genus Komagataeibacter as Komagataeibacter kakiaceti comb. nov., Komagataeibacter medellinensis comb. nov. and Komagataeibacter maltaceti comb. nov. Int J Syst Evol Microbiol 2014;64:1670–1672 [CrossRef][PubMed]
    [Google Scholar]
  14. Yamada Y, Yukphan P, Vu HTL, Muramatsu Y, Ochaikul D et al. Subdivision of the genus Gluconacetobacter Yamada, Hoshino and Ishikawa 1998: the proposal of Komagatabacter gen. nov., for strains accommodated to the Gluconacetobacter xylinus group in the α-Proteobacteria. Ann Microbiol 2012;62:849–859 [CrossRef]
    [Google Scholar]
  15. Suwanposri A, Yukphan P, Yamada Y, Ochaikul D. Identification and biocellulose production of Gluconacetobacter strains isolated from tropical fruits in Thailand. Maejo Int J Sci Tech 2013;7:70–82
    [Google Scholar]
  16. Hestrin S, Schramm M. Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 1954;58:345–352 [CrossRef][PubMed]
    [Google Scholar]
  17. Castro C, Cleenwerck I, Trcek J, Zuluaga R, De Vos P et al. Gluconacetobacter medellinensis sp. nov., cellulose- and non-cellulose-producing acetic acid bacteria isolated from vinegar. Int J Syst Evol Microbiol 2013;63:1119–1125 [CrossRef][PubMed]
    [Google Scholar]
  18. Slapšak N, Cleenwerck I, de Vos P, Trček J. Gluconacetobacter maltaceti sp. nov., a novel vinegar producing acetic acid bacterium. Syst Appl Microbiol 2013;36:17–21 [CrossRef][PubMed]
    [Google Scholar]
  19. Leifson E. The flagellation and taxonomy of species of Acetobacter. Antonie van Leeuwenhoek 1954;20:102–110 [CrossRef][PubMed]
    [Google Scholar]
  20. Sokollek SJ, Hammes WP. Description of a starter culture preparation for vinegar fermentation. Syst Appl Microbiol 1997;20:481–491 [CrossRef]
    [Google Scholar]
  21. Entani E, Ohmori S, Masai H, Suzuki KEN-I. Acetobacter polyoxogenes sp. nov., a new species of an acetic acid bacterium useful for producing vinegar with high acidity. J Gen Appl Microbiol 1985;31:475–490 [CrossRef]
    [Google Scholar]
  22. O'Fallon JV, Busboom JR, Nelson ML, Gaskins CT. A direct method for fatty acid methyl ester synthesis: application to wet meat tissues, oils, and feedstuffs. J Anim Sci 2007;85:1511–1521 [CrossRef][PubMed]
    [Google Scholar]
  23. Cleenwerck I, De Vos P, de Vuyst L. Phylogeny and differentiation of species of the genus Gluconacetobacter and related taxa based on multilocus sequence analyses of housekeeping genes and reclassification of Acetobacter xylinus subsp. sucrofermentans as Gluconacetobacter sucrofermentans (Toyosaki et al. 1996) sp. nov., comb. nov. Int J Syst Evol Microbiol 2010;60:2277–2283 [CrossRef][PubMed]
    [Google Scholar]
  24. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  25. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  26. Logan NA, Berge O, Bishop AH, Busse HJ, de Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009;59:2114–2121 [CrossRef][PubMed]
    [Google Scholar]
  27. Li L, Cleenwerck I, de Vuyst L, Vandamme P. Identification of acetic acid bacteria through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and report of Gluconobacter nephelii Kommanee et al. 2011 and Gluconobacter uchimurae Tanasupawat et al. 2012 as later heterotypic synonyms of Gluconobacter japonicus Malimas et al. 2009 and Gluconobacter oxydans (Henneberg 1897) De Ley 1961 (Approved Lists 1980) emend. Gosselé et al. 1983, respectively. Syst Appl Microbiol 2017;40:123–134 [CrossRef][PubMed]
    [Google Scholar]
  28. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  29. Brady C, Cleenwerck I, Venter S, Vancanneyt M, Swings J et al. Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Syst Appl Microbiol 2008;31:447–460 [CrossRef][PubMed]
    [Google Scholar]
  30. de Bruyne K, Schillinger U, Caroline L, Boehringer B, Cleenwerck I et al. Leuconostoc holzapfelii sp. nov., isolated from Ethiopian coffee fermentation and assessment of sequence analysis of housekeeping genes for delineation of Leuconostoc species. Int J Syst Evol Microbiol 2007;57:2952–2959 [CrossRef][PubMed]
    [Google Scholar]
  31. Martens M, Delaere M, Coopman R, De Vos P, Gillis M et al. Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol 2007;57:489–503 [CrossRef][PubMed]
    [Google Scholar]
  32. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005;151:2141–2150 [CrossRef][PubMed]
    [Google Scholar]
  33. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 2002;52:1043–1047 [CrossRef][PubMed]
    [Google Scholar]
  34. Wayne LG. International Committee on Systematic Bacteriology: announcement of the report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Zentralblatt fur Bakteriologie 1988;268:433–434
    [Google Scholar]
  35. Iino T, Suzuki R, Tanaka N, Kosako Y, Ohkuma M et al. Gluconacetobacter kakiaceti sp. nov., an acetic acid bacterium isolated from a traditional Japanese fruit vinegar. Int J Syst Evol Microbiol 2012;62:1465–1469 [CrossRef][PubMed]
    [Google Scholar]
  36. Lisdiyanti P, Navarro RR, Uchimura T, Komagata K. Reclassification of Gluconacetobacter hansenii strains and proposals of Gluconacetobacter saccharivorans sp. nov. and Gluconacetobacter nataicola sp. nov. Int J Syst Evol Microbiol 2006;56:2101–2111 [CrossRef][PubMed]
    [Google Scholar]
  37. Navarro RR, Uchimura T, Komagata K. Taxonomic heterogeneity of strains comprising Gluconacetobacter hansenii. J Gen Appl Microbiol 1999;45:295–30038 [CrossRef][PubMed]
    [Google Scholar]
  38. Dutta D, Gachhui R. Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp. nov., isolated from Kombucha tea. Int J Syst Evol Microbiol 2007;57:353–357 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002947
Loading
/content/journal/ijsem/10.1099/ijsem.0.002947
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error