1887

Abstract

A novel endophytic actinomycete, designated strain A-T 8314, was isolated from a wild orchid, Podochilus microphyllus Lindl., collected from Trat Province, Thailand. The taxonomic position of strain A-T 8314 was established using a combination of genotypic and phenotypic analyses. The isolate was a Gram-positive bacterium that developed bud-like spore chains. Strain A-T 8314 grew aerobically at an optimum temperature of 20–25 °C and an optimal pH 6.0. The cell wall contained meso-diaminopimelic acid, and the whole-cell sugars were ribose, arabinose and galactose. The predominant menaquinone was MK-8 (H4). The polar lipid profile contained phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, phosphatidylmonomethylethanolamine, hydroxy-phosphatidylmonomethylethanolamine and hydroxyl phosphatidylethanolamine. The predominant cellular fatty acid was iso-C16 : 0. The DNA G+C content of the genomic DNA was 73.2±0.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain A-T 8314 belonged to the genus Actinomycetospora , and was most closely related to Actinomycetospora chiangmaiensis YIM 0006 (98.8 %) and Actinomycetospora corticicola 014-5 (98.6 %). The DNA–DNA relatedness values that distinguished A-T 8314 from its closest species were below 70 %. Following an evaluation of phenotypic, chemotaxonomic and genotypic studies, it was concluded that the new isolate represents as a novel species, for which the name Actinomycetospora endophytica sp. nov is proposed. The type strain is A-T 8314 (=TBRC 5722=NBRC 113235).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002938
2018-07-30
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/9/3017.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002938&mimeType=html&fmt=ahah

References

  1. Jiang Y, Wiese J, Tang SK, Xu LH, Imhoff JF et al. Actinomycetospora chiangmaiensis gen. nov., sp. nov., a new member of the family Pseudonocardiaceae. Int J Syst Evol Microbiol 2008;58:408–413 [CrossRef][PubMed]
    [Google Scholar]
  2. Tamura T, Ishida Y, Hamada M, Otoguro M, Yamamura H et al. Description of Actinomycetospora chibensis sp. nov., Actinomycetospora chlora sp. nov., Actinomycetospora cinnamomea sp. nov., Actinomycetospora corticicola sp. nov., Actinomycetospora lutea sp. nov., Actinomycetospora straminea sp. nov. and Actinomycetospora succinea sp. nov. and emended description of the genus Actinomycetospora. Int J Syst Evol Microbiol 2011;61:1275–1280 [CrossRef][PubMed]
    [Google Scholar]
  3. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970;20:435–443 [CrossRef]
    [Google Scholar]
  4. He H, Zhang Y, Ma Z, Li C, Liu C et al. Actinomycetospora rhizophila sp. nov., an actinomycete isolated from rhizosphere soil of a peace lily (Spathi phyllum Kochii). Int J Syst Evol Microbiol 2015;65:1520–1524 [CrossRef][PubMed]
    [Google Scholar]
  5. Yamamura H, Ashizawa H, Nakagawa Y, Hamada M, Ishida Y et al. Actinomycetospora iriomotensis sp. nov., a novel actinomycete isolated from a lichen sample. J Antibiot 2011;64:289–292 [CrossRef][PubMed]
    [Google Scholar]
  6. Hayakawa M, Nonomura H. A new method for the intensive isolation of actinomycetes from soil. Actinomycetologica 1989;3:95–104 [CrossRef]
    [Google Scholar]
  7. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  8. Suriyachadkun C, Chunhametha S, Thawai C, Tamura T, Potacharoen W et al. Planotetraspora thailandica sp. nov., isolated from soil in Thailand. Int J Syst Evol Microbiol 2009;59:992–997 [CrossRef][PubMed]
    [Google Scholar]
  9. Itoh T, Kudo T, Parenti F, Seino A. Amended description of the genus Kineosporia, based on chemotaxonomic and morphological studies. Int J Syst Bacteriol 1989;39:168–173 [CrossRef]
    [Google Scholar]
  10. Cappuccino JG, Sherman N. Microbiology: A Laboratory Manual, 7th ed. NY: Pearson Education; 2007
    [Google Scholar]
  11. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974;24:54–63 [CrossRef]
    [Google Scholar]
  12. Xie QY, Lin HP, Li L, Brown R, Goodfellow M et al. Verrucosispora wenchangensis sp. nov., isolated from mangrove soil. Antonie van Leeuwenhoek 2012;102:1–7 [CrossRef][PubMed]
    [Google Scholar]
  13. Tamura T, Nakagaito Y, Nishii T, Hasegawa T, Stackebrandt E et al. A new genus of the order Actinomycetales, Couchioplanes gen. nov., with descriptions of Couchioplanes caeruleus (Horan and Brodsky 1986) comb. nov. and Couchioplanes caeruleus subsp. azureus subsp. nov. Int J Syst Bacteriol 1994;44:193–203 [CrossRef][PubMed]
    [Google Scholar]
  14. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
    [Google Scholar]
  15. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207
    [Google Scholar]
  16. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1987;2:233–241 [CrossRef]
    [Google Scholar]
  17. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI, Inc; 1990
    [Google Scholar]
  18. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  19. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  20. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989;16:176–178
    [Google Scholar]
  21. Saito H, Miura KI. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 1963;72:619–629 [CrossRef][PubMed]
    [Google Scholar]
  22. Claverías FP, Undabarrena A, González M, Seeger M, Cámara B. Culturable diversity and antimicrobial activity of Actinobacteria from marine sediments in Valparaíso bay, Chile. Front Microbiol 2015;6:1–11 [CrossRef][PubMed]
    [Google Scholar]
  23. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  24. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  25. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  27. Felsenstein J. Parsimony in systematics: biological and statistical issues. Annu Rev Ecol Syst 1983;14:313–333 [CrossRef]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  29. Sudhir K, Glen S, Koichiro T. MEGA7: molecular evolutionary genetics analysis version 7.0. Mol Biol Evol 2015;33:1870–1874
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  31. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  32. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  33. Verlander CP. Detection of horseradish peroxidase by colorimetry. In Kricka LJ. (editor) Nonisotopic DNA Probe Techniques NY: Academic Press; 1992; pp.185–201
    [Google Scholar]
  34. Wayne LG, Brenner DJ, Colwell RR, Grimon PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002938
Loading
/content/journal/ijsem/10.1099/ijsem.0.002938
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error