1887

Abstract

A Gram-stain-negative, non-spore-forming, motile and rod-shaped strain, z29, was isolated from the active sludge of a municipal wastewater treatment plant at Wuhu, Anhui, PR China. Phylogenetic analysis of the 16S rRNA gene revealed that strain z29 is most closely related to the genus Arenimonas , showing the highest similarity to Arenimonas donghaensis HO3-R19 (97.14 %), Arenimonas aestuarii S2-21 (96.46 %), Arenimonas daejeonensis T7-07 (96.24 %) and Arenimonas taoyuanensis YN2-31A (96.23 %). The only respiratory quinone of strain z29 was ubiquinone 8 (Q-8). The major cellular fatty acids (>10 %) were iso-C15 : 0, iso-C16 : 0 and summed feature 9 (iso-C17 : 1ω9c and/or C16 : 010-methyl). The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. The genomic DNA G+C content was 70.2 mol%. Genomic comparison between strain z29 and Arenimonas donghaensis HO3-R19 revealed 83.72 % average nucleotide identity. Based on the phenotypic and chemotaxonomic results together with phylogenetical analysis, strain z29 is classified as representing a novel species of the genus Arenimonas , for which the name Arenimonas caeni sp. nov. is proposed. The type strain is z29 (=JCM 32091=CCTCC AB 2017067).

Keyword(s): Arenimonas caeni
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002937
2018-07-24
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/9/2996.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002937&mimeType=html&fmt=ahah

References

  1. Kwon SW, Kim BY, Weon HY, Baek YK, Go SJ. Arenimonas donghaensis gen. nov., sp. nov., isolated from seashore sand. Int J Syst Evol Microbiol 2007;57:954–958 [CrossRef][PubMed]
    [Google Scholar]
  2. Jin L, Kim KK, An KG, Oh HM, Lee ST. Arenimonas daejeonensis sp. nov., isolated from compost. Int J Syst Evol Microbiol 2012;62:1674–1678 [CrossRef][PubMed]
    [Google Scholar]
  3. Jin L, Kim KK, Im WT, Yang HC, Lee ST. Aspromonas composti gen. nov., sp. nov., a novel member of the family Xanthomonadaceae. Int J Syst Evol Microbiol 2007;57:1876–1880 [CrossRef][PubMed]
    [Google Scholar]
  4. Aslam Z, Park JH, Kim SW, Jeon CO, Chung YR. Arenimonas oryziterrae sp. nov., isolated from a field of rice (Oryza sativa L.) managed under a no-tillage regime, and reclassification of Aspromonas composti as Arenimonas composti comb. nov. Int J Syst Evol Microbiol 2009;59:2967–2972 [CrossRef][PubMed]
    [Google Scholar]
  5. Zhang SY, Xiao W, Xia YS, Wang YX, Cui XL et al. Arenimonas taoyuanensis sp. nov., a novel bacterium isolated from rice-field soil in China. Antonie van Leeuwenhoek 2015;107:1181–1187 [CrossRef][PubMed]
    [Google Scholar]
  6. Young CC, Kämpfer P, Ho MJ, Busse HJ, Huber BE et al. Arenimonas malthae sp. nov., a gammaproteobacterium isolated from an oil-contaminated site. Int J Syst Evol Microbiol 2007;57:2790–2793 [CrossRef][PubMed]
    [Google Scholar]
  7. Jeong HI, Jin HM, Jeon CO. Arenimonas aestuarii sp. nov., isolated from estuary sediment. Int J Syst Evol Microbiol 2016;66:1527–1532 [CrossRef][PubMed]
    [Google Scholar]
  8. Huy H, Jin L, Lee YK, Lee KC, Lee JS et al. Arenimonas daechungensis sp. nov., isolated from the sediment of a eutrophic reservoir. Int J Syst Evol Microbiol 2013;63:484–489 [CrossRef][PubMed]
    [Google Scholar]
  9. Chen F, Shi Z, Wang G. Arenimonas metalli sp. nov., isolated from an iron mine. Int J Syst Evol Microbiol 2012;62:1744–1749 [CrossRef][PubMed]
    [Google Scholar]
  10. Yuan X, Nogi Y, Tan X, Zhang RG, Lv J. Arenimonas maotaiensis sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 2014;64:3994–4000 [CrossRef][PubMed]
    [Google Scholar]
  11. Makk J, Homonnay ZG, Kéki Z, Nemes-Barnás K, Márialigeti K et al. Arenimonas subflava sp. nov., isolated from a drinking water network, and emended description of the genus Arenimonas. Int J Syst Evol Microbiol 2015;65:1915–1921 [CrossRef][PubMed]
    [Google Scholar]
  12. Xu L, Sun JQ, Liu X, Liu XZ, Qiao MQ et al. Arenimonas soli sp. nov., isolated from saline-alkaline soil. Int J Syst Evol Microbiol 2017;67:2829–2833 [CrossRef][PubMed]
    [Google Scholar]
  13. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  14. Smibert R, Krieg N. Phenotypic characterization. In Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  15. Tan X, Zhang RG, Meng TY, Liang HZ, Lv J. Taibaiella chishuiensis sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 2014;64:1795–1801 [CrossRef][PubMed]
    [Google Scholar]
  16. Atlas R. Handbook of Microbiology Media, 2nd ed. Boca Raton, FL: CRC Press; 1993
    [Google Scholar]
  17. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 1996;46:1088–1092 [CrossRef][PubMed]
    [Google Scholar]
  18. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  19. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  23. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  24. Tamaoka J, Katayama Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Microbiol 1983;54:31–36[PubMed]
    [Google Scholar]
  25. Kates M. General analytical procedures. Techniques of lipidology.. Amsterdam: Elsevier 1986;2112–185
  26. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  27. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  28. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002937
Loading
/content/journal/ijsem/10.1099/ijsem.0.002937
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error