1887

Abstract

A bacterial strain, S1-2-2-6, was isolated from a soil sample collected in Jeollabuk-do province, Republic of Korea. Cells of this strain were observed to be Gram-stain-negative, short and rod-shaped, and colonies were red to pink in colour. Analysis of 16S rRNA gene sequences identified this strain as representing a member of the genus Hymenobacter in the family Cytophagaceae , with the highest levels of sequence similarity being observed in relation to Hymenobacter terrae DG7A (98.2 %), Hymenobacter rubidus DG7B (97.9 %), Hymenobacter soli PB17 (97.7 %), and Hymenobacter daeguensis 16F3Y-2 (97.3 %). Growth of S1-2-2-6 was observed at 4–30 °C, pH 6–8 and in the presence of 0–0.5 % NaCl. The predominant respiratory quinone of this strain was menaquinone-7, the major fatty acids were C15 : 0 iso, C15 : 0 anteiso, and Summed feature 3 (C16 : 1ω7c/C16 : 1ω6c), and the major polar lipid was phosphatidylethanolamine. The genomic DNA G+C content of S1-2-2-6 was 60.7 mol%. DNA–DNA hybridization experiments with H. terrae , H. rubidus , H. soli and H. daeguensis resulted in relatedness values of 35.9 and 38.4 %, 34.2 and 30.4 %, 28.3 and 33.1 %, and 23.5 and 27.9 %, respectively. These DNA–DNA hybridization results, in addition to some differentiating phenotypic properties, clearly indicate that S1-2-2-6 is a representative of a novel species of the genus Hymenobacter , for which the name Hymenobacter rufus sp. nov. is proposed. The type strain is S1-2-2-6 (=KCTC 52736=JCM 32196).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002934
2018-07-20
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/9/2983.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002934&mimeType=html&fmt=ahah

References

  1. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B et al. Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antartica soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 1998;21:374–383 [CrossRef][PubMed]
    [Google Scholar]
  2. Han L, Wu SJ, Qin CY, Zhu YH, Lu ZQ et al. Hymenobacter qilianensis sp. nov., isolated from a subsurface sandstone sediment in the permafrost region of Qilian Mountains, China and emended description of the genus Hymenobacter. Antonie van Leeuwenhoek 2014;105:971–978 [CrossRef][PubMed]
    [Google Scholar]
  3. Stanier RY. Studies on the cytophagas. J Bacteriol 1940;40:619–635[PubMed]
    [Google Scholar]
  4. Hahnke RL, Meier-Kolthoff JP, García-López M, Mukherjee S, Huntemann M et al. Genome-based taxonomic classification of bacteroidetes. Front Microbiol 2016;7:2003 [CrossRef][PubMed]
    [Google Scholar]
  5. Srinivasan S, Lee JJ, Park KR, Park SH, Jung HY et al. Hymenobacter terrae sp. nov., a bacterium isolated from soil. Curr Microbiol 2015;70:643–650 [CrossRef][PubMed]
    [Google Scholar]
  6. Ten LN, Lee YH, Lee JJ, Park SJ, Lee SY et al. Hymenobacter daeguensis sp. nov. isolated from river water. J Microbiol 2017;55:253–259 [CrossRef][PubMed]
    [Google Scholar]
  7. Buczolits S, Denner EB, Kämpfer P, Busse HJ. Proposal of Hymenobacter norwichensis sp. nov., classification of 'Taxeobacter ocellatus', 'Taxeobacter gelupurpurascens' and 'Taxeobacter chitinovorans' as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol 2006;56:2189–2192 [CrossRef][PubMed]
    [Google Scholar]
  8. Buczolits S, Busse HJ. Hymenobacter. 1-11. In Whitman WB. (editor) Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Inc; 2015
    [Google Scholar]
  9. Buczolits S, Denner EB, Vybiral D, Wieser M, Kämpfer P et al. Classification of three airborne bacteria and proposal of Hymenobacter aerophilus sp. nov. Int J Syst Evol Microbiol 2002;52:445–456 [CrossRef][PubMed]
    [Google Scholar]
  10. Kim KH, Im WT, Lee ST. Hymenobacter soli sp. nov., isolated from grass soil. Int J Syst Evol Microbiol 2008;58:941–945 [CrossRef][PubMed]
    [Google Scholar]
  11. Jin L, Lee HG, Kim SG, Lee KC, Ahn CY et al. Hymenobacter ruber sp. nov., isolated from grass soil. Int J Syst Evol Microbiol 2014;64:979–983 [CrossRef][PubMed]
    [Google Scholar]
  12. Kang JY, Chun J, Choi A, Moon SH, Cho JC et al. Hymenobacter koreensis sp. nov. and Hymenobacter saemangeumensis sp. nov., isolated from estuarine water. Int J Syst Evol Microbiol 2013;63:4568–4573 [CrossRef][PubMed]
    [Google Scholar]
  13. Reddy GS, Garcia-Pichel F. Description of Hymenobacter arizonensis sp. nov. from the southwestern arid lands of the United States of America. Antonie van Leeuwenhoek 2013;103:321–330 [CrossRef][PubMed]
    [Google Scholar]
  14. Klassen JL, Foght JM. Characterization of Hymenobacter isolates from Victoria Upper Glacier, Antarctica reveals five new species and substantial non-vertical evolution within this genus. Extremophiles 2011;15:45–57 [CrossRef][PubMed]
    [Google Scholar]
  15. Chung AP, Lopes A, Nobre MF, Morais PV. Hymenobacter perfusus sp. nov., Hymenobacter flocculans sp. nov. and Hymenobacter metalli sp. nov. three new species isolated from an uranium mine waste water treatment system. Syst Appl Microbiol 2010;33:436–443 [CrossRef][PubMed]
    [Google Scholar]
  16. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  17. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  18. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1991;41:95–98
    [Google Scholar]
  19. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  22. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  25. Lee JJ, Joo ES, Kim EB, Jeon SH, Srinivasan S et al. Hymenobacter rubidus sp. nov., bacterium isolated form a soil. J Microbiol 2016;109:457–466
    [Google Scholar]
  26. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  27. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  28. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  29. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936;31:575–580[PubMed]
    [Google Scholar]
  30. Cappuccino JG, Sherman N. Microbiology: A Laboratory Manual, 9th ed. San Francisco, USA: Benjamin Cummings; 2010.;
    [Google Scholar]
  31. Ten LN, Baek SH, Im WT, Lee M, Oh HW et al. Paenibacillus panacisoli sp. nov., a xylanolytic bacterium isolated from soil in a ginseng field in South Korea. Int J Syst Evol Microbiol 2006;56:2677–2681 [CrossRef][PubMed]
    [Google Scholar]
  32. Wilson K. Preparation of Genomic DNA from Bacteria. In Ausubel FM. (editor) Current Protocols in Molecular Biology New York, NY: Jonh Wiley & Sons, Inc; 1997; pp.2.4.1–2.4.2
    [Google Scholar]
  33. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  34. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Tecqhnical Note 101. Netwark, DE: MIDI Inc; 1990
    [Google Scholar]
  35. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  36. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–205
    [Google Scholar]
  37. Ten LN, Jung HM, Im WT, Yoo SA, Lee ST. Lysobacter daecheongensis sp. nov., isolated from sediment of stream near the Daechung dam in South Korea. J Microbiol 2008;46:519–524 [CrossRef][PubMed]
    [Google Scholar]
  38. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996;42:457–469 [CrossRef]
    [Google Scholar]
  39. Baker MG, Lalonde SV, Konhauser KO, Foght JM. Role of extracellular polymeric substances in the surface chemical reactivity of Hymenobacter aerophilus, a psychrotolerant bacterium. Appl Environ Microbiol 2010;76:102–109 [CrossRef][PubMed]
    [Google Scholar]
  40. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002934
Loading
/content/journal/ijsem/10.1099/ijsem.0.002934
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error